Discreteness of Asymptotic Tensor Ranks (Extended Abstract)

Authors Jop Briët , Matthias Christandl , Itai Leigh , Amir Shpilka , Jeroen Zuiddam

Thumbnail PDF


  • Filesize: 0.75 MB
  • 14 pages

Document Identifiers

Author Details

Jop Briët
  • Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
Matthias Christandl
  • University of Copenhagen, Denmark
Itai Leigh
  • Tel Aviv University, Israel
Amir Shpilka
  • Tel Aviv University, Israel
Jeroen Zuiddam
  • University of Amsterdam, The Netherlands


We thank the Centre de Recherches Mathématiques Montréal, where this work was initiated. We also thank Jurij Volcic and Vladimir Lysikov for helpful and stimulating discussions. MC Thanks the National Center for Competence in Research SwissMAP of the Swiss National Science Foundation and the Section of Mathematics at the University of Geneva for their hospitality. IL thanks the QMATH Center at the University of Copenhagen for the hospitality during his stay.

Cite AsGet BibTex

Jop Briët, Matthias Christandl, Itai Leigh, Amir Shpilka, and Jeroen Zuiddam. Discreteness of Asymptotic Tensor Ranks (Extended Abstract). In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 20:1-20:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Tensor parameters that are amortized or regularized over large tensor powers, often called "asymptotic" tensor parameters, play a central role in several areas including algebraic complexity theory (constructing fast matrix multiplication algorithms), quantum information (entanglement cost and distillable entanglement), and additive combinatorics (bounds on cap sets, sunflower-free sets, etc.). Examples are the asymptotic tensor rank, asymptotic slice rank and asymptotic subrank. Recent works (Costa-Dalai, Blatter-Draisma-Rupniewski, Christandl-Gesmundo-Zuiddam) have investigated notions of discreteness (no accumulation points) or "gaps" in the values of such tensor parameters. We prove a general discreteness theorem for asymptotic tensor parameters of order-three tensors and use this to prove that (1) over any finite field (and in fact any finite set of coefficients in any field), the asymptotic subrank and the asymptotic slice rank have no accumulation points, and (2) over the complex numbers, the asymptotic slice rank has no accumulation points. Central to our approach are two new general lower bounds on the asymptotic subrank of tensors, which measures how much a tensor can be diagonalized. The first lower bound says that the asymptotic subrank of any concise three-tensor is at least the cube-root of the smallest dimension. The second lower bound says that any concise three-tensor that is "narrow enough" (has one dimension much smaller than the other two) has maximal asymptotic subrank. Our proofs rely on new lower bounds on the maximum rank in matrix subspaces that are obtained by slicing a three-tensor in the three different directions. We prove that for any concise tensor, the product of any two such maximum ranks must be large, and as a consequence there are always two distinct directions with large max-rank.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algebraic complexity theory
  • Theory of computation → Quantum information theory
  • Mathematics of computing → Combinatoric problems
  • Tensors
  • Asymptotic rank
  • Subrank
  • Slice rank
  • Restriction
  • Degeneration
  • Diagonalization


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Anura Abeyesinghe, Patrick Hayden, Graeme Smith, and Andreas J. Winter. Optimal superdense coding of entangled states. IEEE Trans. Inform. Theory, 52(8):3635-3641, 2006. URL: https://doi.org/10.1109/TIT.2006.878174.
  2. Josh Alman. Limits on the universal method for matrix multiplication. In Proceedings of the 34th Computational Complexity Conference (CCC 2019), pages 12:1-12:24, 2019. URL: https://doi.org/10.4230/LIPIcs.CCC.2019.12.
  3. Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages 522-539. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.32.
  4. Shimshon Avraham Amitsur. Generalized polynomial identities and pivotal monomials. Trans. Amer. Math. Soc., 114:210-226, 1965. URL: https://doi.org/10.2307/1993998.
  5. Markus Bläser. Fast Matrix Multiplication. Number 5 in Graduate Surveys. Theory of Computing Library, 2013. URL: https://doi.org/10.4086/toc.gs.2013.005.
  6. Markus Bläser and Vladimir Lysikov. Slice rank of block tensors and irreversibility of structure tensors of algebras. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020), pages 17:1-17:15, 2020. URL: https://doi.org/10.4230/LIPIcs.MFCS.2020.17.
  7. Jonah Blasiak, Thomas Church, Henry Cohn, Joshua A. Grochow, Eric Naslund, William F. Sawin, and Chris Umans. On cap sets and the group-theoretic approach to matrix multiplication. Discrete Anal., 2017. URL: https://doi.org/10.19086/da.1245.
  8. Jonah Blasiak, Henry Cohn, Joshua A. Grochow, Kevin Pratt, and Chris Umans. Matrix multiplication via matrix groups, 2022. URL: https://arxiv.org/abs/2204.03826.
  9. Andreas Blatter, Jan Draisma, and Filip Rupniewski. Countably many asymptotic tensor ranks, 2022. URL: https://doi.org/10.48550/arXiv.2212.12219.
  10. Andreas Blatter, Jan Draisma, and Filip Rupniewski. A tensor restriction theorem over finite fields, 2022. URL: https://doi.org/10.48550/arXiv.2211.12319.
  11. Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic complexity theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1997. URL: https://doi.org/10.1007/978-3-662-03338-8.
  12. Peter Bürgisser and Christian Ikenmeyer. Geometric complexity theory and tensor rank. In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC 2011), pages 509-518. ACM, 2011. URL: https://doi.org/10.1145/1993636.1993704.
  13. Matthias Christandl, Fulvio Gesmundo, and Jeroen Zuiddam. A gap in the subrank of tensors, 2022. URL: https://doi.org/10.48550/arXiv.2212.01668.
  14. Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. Barriers for fast matrix multiplication from irreversibility. Theory of Computing, 17(2):1-32, 2021. URL: https://doi.org/10.4086/toc.2021.v017a002.
  15. Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. Universal points in the asymptotic spectrum of tensors. J. Amer. Math. Soc., 36(1):31-79, 2023. URL: https://doi.org/10.1090/jams/996.
  16. Alex Cohen and Guy Moshkovitz. Structure vs. randomness for bilinear maps. In 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC 2021), pages 800-808. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451007.
  17. Alex Cohen and Guy Moshkovitz. Partition and analytic rank are equivalent over large fields. Duke Mathematical Journal, pages 1-38, 2023. URL: https://doi.org/10.1215/00127094-2022-0086.
  18. Henry Cohn, Robert Kleinberg, Balazs Szegedy, and Christopher Umans. Group-theoretic algorithms for matrix multiplication. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pages 379-388. IEEE, 2005. URL: https://doi.org/10.1109/SFCS.2005.39.
  19. Henry Cohn and Christopher Umans. A group-theoretic approach to fast matrix multiplication. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), pages 438-449. IEEE, 2003. URL: https://doi.org/10.1109/SFCS.2003.1238217.
  20. Henry Cohn and Christopher Umans. Fast matrix multiplication using coherent configurations. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pages 1074-1086. SIAM, 2013. Google Scholar
  21. Paul M. Cohn. Skew fields, volume 57 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995. Theory of general division rings. URL: https://doi.org/10.1017/CBO9781139087193.
  22. Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic Comput., 9(3):251-280, 1990. URL: https://doi.org/10.1016/S0747-7171(08)80013-2.
  23. Simone Costa and Marco Dalai. A gap in the slice rank of k-tensors. J. Comb. Theory, Ser. A, 177:105335, 2021. URL: https://doi.org/10.1016/j.jcta.2020.105335.
  24. Toby Cubitt, Aram Wettroth Harrow, Debbie Leung, Ashley Montanaro, and Andreas Winter. Counterexamples to additivity of minimum output p-Rényi entropy for p close to 0. Comm. Math. Phys., 284(1):281-290, 2008. URL: https://doi.org/10.1007/s00220-008-0625-z.
  25. Toby Cubitt, Ashley Montanaro, and Andreas Winter. On the dimension of subspaces with bounded Schmidt rank. J. Math. Phys., 49(2):022107, 6, 2008. URL: https://doi.org/10.1063/1.2862998.
  26. Harm Derksen. The G-stable rank for tensors and the cap set problem. Algebra Number Theory, 16(5):1071-1097, 2022. URL: https://doi.org/10.2140/ant.2022.16.1071.
  27. Harm Derksen and Visu Makam. On non-commutative rank and tensor rank. Linear and Multilinear Algebra, 66(6):1069-1084, 2018. URL: https://doi.org/10.1080/03081087.2017.1337058.
  28. Harm Derksen, Visu Makam, and Jeroen Zuiddam. Subrank and Optimal Reduction of Scalar Multiplications to Generic Tensors. In 37th Computational Complexity Conference (CCC 2022), pages 9:1-9:23, 2022. URL: https://doi.org/10.4230/LIPIcs.CCC.2022.9.
  29. Jean Dieudonné. Sur une généralisation du groupe orthogonal à quatre variables. Arch. Math., 1:282-287, 1949. URL: https://doi.org/10.1007/BF02038756.
  30. Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing, 2023. URL: https://arxiv.org/abs/2210.10173.
  31. Jordan S. Ellenberg and Dion Gijswijt. On large subsets of F_qⁿ with no three-term arithmetic progression. Annals of Mathematics, pages 339-343, 2017. URL: https://doi.org/10.4007/annals.2017.185.1.8.
  32. Harley Flanders. On spaces of linear transformations with bounded rank. J. London Math. Soc., 37:10-16, 1962. URL: https://doi.org/10.1112/jlms/s1-37.1.10.
  33. Marc Fortin and Christophe Reutenauer. Commutative/noncommutative rank of linear matrices and subspaces of matrices of low rank. Sém. Lothar. Combin., 52:Art. B52f, 12, 2004. URL: http://eudml.org/doc/125000.
  34. Fulvio Gesmundo and Jeroen Zuiddam. The next gap in the subrank of 3-tensors, 2023. URL: https://arxiv.org/abs/2307.06115.
  35. W. T. Gowers and J. Wolf. Linear forms and higher-degree uniformity for functions on 𝐅ⁿ_p. Geom. Funct. Anal., 21(1):36-69, 2011. URL: https://doi.org/10.1007/s00039-010-0106-3.
  36. Elad Haramaty and Amir Shpilka. On the structure of cubic and quartic polynomials. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 2010), pages 331-340, 2010. URL: https://doi.org/10.1145/1806689.1806736.
  37. Patrick Hayden. Entanglement in random subspaces. In Quantum communication, measurement and computing, volume 734 of AIP Conf. Proc., pages 226-229. Amer. Inst. Phys., Melville, NY, 2004. URL: https://doi.org/10.1063/1.1834421.
  38. Patrick Hayden, Debbie W. Leung, and Andreas Winter. Aspects of generic entanglement. Comm. Math. Phys., 265(1):95-117, 2006. URL: https://doi.org/10.1007/s00220-006-1535-6.
  39. Robert Kleinberg, Will Sawin, and David Speyer. The growth rate of tri-colored sum-free sets. Discrete Analysis, 2018. URL: https://doi.org/10.19086/da.3734.
  40. Swastik Kopparty, Guy Moshkovitz, and Jeroen Zuiddam. Geometric Rank of Tensors and Subrank of Matrix Multiplication. In 35th Computational Complexity Conference (CCC 2020), 2020. URL: https://doi.org/10.4230/LIPIcs.CCC.2020.35.
  41. J. M. Landsberg and Giorgio Ottaviani. Equations for secant varieties of Veronese and other varieties. Ann. Mat. Pura Appl. (4), 192(4):569-606, 2013. URL: https://doi.org/10.1007/s10231-011-0238-6.
  42. François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (ISSAC 2014), pages 296-303. ACM, 2014. URL: https://doi.org/10.1145/2608628.2608664.
  43. Shachar Lovett. The analytic rank of tensors and its applications. Discrete Anal., pages Paper No. 7, 10, 2019. URL: https://doi.org/10.19086/da.8654.
  44. Roy Meshulam. On the maximal rank in a subspace of matrices. Quart. J. Math. Oxford Ser. (2), 36(142):225-229, 1985. URL: https://doi.org/10.1093/qmath/36.2.225.
  45. Roy Meshulam and Peter Semrl. Locally linearly dependent operators and reflexivity of operator spaces. Linear Algebra Appl., 383:143-150, 2004. URL: https://doi.org/10.1016/j.laa.2003.12.024.
  46. Eric Naslund and Will Sawin. Upper bounds for sunflower-free sets. Forum Math. Sigma, 5:Paper No. e15, 10, 2017. URL: https://doi.org/10.1017/fms.2017.12.
  47. Kalyanapuram Rangachari Parthasarathy. On the maximal dimension of a completely entangled subspace for finite level quantum systems. Proc. Indian Acad. Sci. Math. Sci., 114(4):365-374, 2004. URL: https://doi.org/10.1007/BF02829441.
  48. Will Sawin and Terence Tao. Notes on the “slice rank” of tensors, 2016. URL: https://terrytao.wordpress.com/2016/08/24/.
  49. Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13(4):354-356, 1969. URL: https://doi.org/10.1007/BF02165411.
  50. Volker Strassen. Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math., 375/376:406-443, 1987. URL: https://doi.org/10.1515/crll.1987.375-376.406.
  51. Volker Strassen. The asymptotic spectrum of tensors. J. Reine Angew. Math., 384:102-152, 1988. URL: https://doi.org/10.1515/crll.1988.384.102.
  52. Volker Strassen. Degeneration and complexity of bilinear maps: some asymptotic spectra. J. Reine Angew. Math., 413:127-180, 1991. URL: https://doi.org/10.1515/crll.1991.413.127.
  53. Terence Tao. A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset bound, 2016. URL: https://terrytao.wordpress.com/2016/05/18/.
  54. Péter Vrana and Matthias Christandl. Asymptotic entanglement transformation between W and GHZ states. Journal of Mathematical Physics, 56(2):022204, February 2015. URL: https://doi.org/10.1063/1.4908106.
  55. Nolan Russell Wallach. An unentangled Gleason’s theorem. In Quantum computation and information, volume 305 of Contemp. Math., pages 291-298. Amer. Math. Soc., Providence, RI, 2002. URL: https://doi.org/10.1090/conm/305/05226.
  56. John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. URL: https://doi.org/10.1017/9781316848142.
  57. Avi Wigderson and Jeroen Zuiddam. Asymptotic spectra: Theory, applications and extensions, 2022. URL: https://staff.fnwi.uva.nl/j.zuiddam/papers/convexity.pdf.
  58. Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix multiplication: from alpha to omega, 2023. URL: https://arxiv.org/abs/2307.07970.
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail