The Distributed Complexity of Locally Checkable Labeling Problems Beyond Paths and Trees

Author Yi-Jun Chang



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2024.26.pdf
  • Filesize: 0.83 MB
  • 25 pages

Document Identifiers

Author Details

Yi-Jun Chang
  • National University of Singapore, Singapore

Cite AsGet BibTex

Yi-Jun Chang. The Distributed Complexity of Locally Checkable Labeling Problems Beyond Paths and Trees. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 26:1-26:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ITCS.2024.26

Abstract

We consider locally checkable labeling (LCL) problems in the LOCAL model of distributed computing. Since 2016, there has been a substantial body of work examining the possible complexities of LCL problems. For example, it has been established that there are no LCL problems exhibiting deterministic complexities falling between ω(log^∗ n) and o(log n). This line of inquiry has yielded a wealth of algorithmic techniques and insights that are useful for algorithm designers. While the complexity landscape of LCL problems on general graphs, trees, and paths is now well understood, graph classes beyond these three cases remain largely unexplored. Indeed, recent research trends have shifted towards a fine-grained study of special instances within the domains of paths and trees. In this paper, we generalize the line of research on characterizing the complexity landscape of LCL problems to a much broader range of graph classes. We propose a conjecture that characterizes the complexity landscape of LCL problems for an arbitrary class of graphs that is closed under minors, and we prove a part of the conjecture. Some highlights of our findings are as follows. - We establish a simple characterization of the minor-closed graph classes sharing the same deterministic complexity landscape as paths, where O(1), Θ(log^∗ n), and Θ(n) are the only possible complexity classes. - It is natural to conjecture that any minor-closed graph class shares the same complexity landscape as trees if and only if the graph class has bounded treewidth and unbounded pathwidth. We prove the "only if" part of the conjecture. - For the class of graphs with pathwidth at most k, we show the existence of LCL problems with randomized and deterministic complexities Θ(n), Θ(n^{1/2}), Θ(n^{1/3}), …, Θ(n^{1/k}) and the non-existence of LCL problems whose deterministic complexity is between ω(log^∗ n) and o(n^{1/k}). Consequently, in addition to the well-known complexity landscapes for paths, trees, and general graphs, there are infinitely many different complexity landscapes among minor-closed graph classes.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • Distributed graph algorithms
  • locality

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi, and Jukka Suomela. Locality in online, dynamic, sequential, and distributed graph algorithms. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, Proceedings of the 50th International Colloquium on Automata, Languages, and Programming (ICALP), volume 261 of LIPIcs, pages 10:1-10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.10.
  2. Saeed Akhoondian Amiri, Stefan Schmid, and Sebastian Siebertz. Distributed dominating set approximations beyond planar graphs. ACM Transactions on Algorithms (TALG), 15(3):1-18, 2019. Google Scholar
  3. Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, and Jukka Suomela. The distributed complexity of locally checkable problems on paths is decidable. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC), pages 262-271, 2019. Google Scholar
  4. Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studenỳ, and Jukka Suomela. Efficient classification of locally checkable problems in regular trees. In Proceedings of the 36th International Symposium on Distributed Computing (DISC), pages 8:1-8:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  5. Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studenỳ, Jukka Suomela, and Aleksandr Tereshchenko. Locally checkable problems in rooted trees. Distributed Computing, 36:277-311, 2023. Google Scholar
  6. Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Classification of Distributed Binary Labeling Problems. In Hagit Attiya, editor, Proceedings of the 34th International Symposium on Distributed Computing (DISC), volume 179 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1-17:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2020.17.
  7. Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Gustav Schmid. On the Node-Averaged Complexity of Locally Checkable Problems on Trees. In Rotem Oshman, editor, Proceedings of the 37th International Symposium on Distributed Computing (DISC), volume 281 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1-7:21, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2023.7.
  8. Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost Global Problems in the LOCAL Model. In Ulrich Schmid and Josef Widder, editors, Proceedings of the 32nd International Symposium on Distributed Computing (DISC), volume 121 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1-9:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2018.9.
  9. Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. How much does randomness help with locally checkable problems? In Proceedings of the 39th ACM Symposium on Principles of Distributed Computing (PODC), pages 299-308. ACM Press, 2020. URL: https://doi.org/10.1145/3382734.3405715.
  10. Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally Checkable Labelings with Small Messages. In Seth Gilbert, editor, Proceedings of the 35th International Symposium on Distributed Computing (DISC), volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), pages 8:1-8:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2021.8.
  11. Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and Jukka Suomela. New classes of distributed time complexity. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 1307-1318, New York, NY, USA, 2018. ACM. URL: https://doi.org/10.1145/3188745.3188860.
  12. Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of distributed symmetry breaking. J. ACM, 63(3):20:1-20:45, 2016. Google Scholar
  13. Anton Bernshteyn. Distributed algorithms, the Lovász Local Lemma, and descriptive combinatorics. Inventiones mathematicae, pages 1-48, 2023. Google Scholar
  14. Marthe Bonamy, Linda Cook, Carla Groenland, and Alexandra Wesolek. A Tight Local Algorithm for the Minimum Dominating Set Problem in Outerplanar Graphs. In Seth Gilbert, editor, Proceedings of the 35th International Symposium on Distributed Computing (DISC), volume 209 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1-13:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2021.13.
  15. Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron. Local Certification of Graph Decompositions and Applications to Minor-Free Classes. In Quentin Bramas, Vincent Gramoli, and Alessia Milani, editors, Proceedings of the 25th International Conference on Principles of Distributed Systems (OPODIS 2021), volume 217 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1-22:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.OPODIS.2021.22.
  16. Sebastian Brandt, Yi-Jun Chang, Jan Grebík, Christoph Grunau, Václav Rozhoň, and Zoltán Vidnyánszky. Local Problems on Trees from the Perspectives of Distributed Algorithms, Finitary Factors, and Descriptive Combinatorics. In Mark Braverman, editor, Proceedings of the 13th Innovations in Theoretical Computer Science Conference (ITCS), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1-29:26, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ITCS.2022.29.
  17. Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local lemma. In Proceedings 48th ACM Symposium on the Theory of Computing (STOC), pages 479-488, 2016. Google Scholar
  18. Sebastian Brandt, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Patric RJ Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznański. LCL problems on grids. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 101-110, 2017. Google Scholar
  19. Yi-Jun Chang. The complexity landscape of distributed locally checkable problems on trees. In Proceedings of the 34th International Symposium on Distributed Computing (DISC), pages 18:1-18:17, 2020. Google Scholar
  20. Yi-Jun Chang. The distributed complexity of locally checkable labeling problems beyond paths and trees. arXiv preprint, 2023. URL: https://arxiv.org/abs/2311.06726.
  21. Yi-Jun Chang. Efficient distributed decomposition and routing algorithms in minor-free networks and their applications. In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing (PODC), pages 55-66, 2023. Google Scholar
  22. Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The complexity of (Δ+1) coloring in congested clique, massively parallel computation, and centralized local computation. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC), pages 471-480, 2019. Google Scholar
  23. Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized and deterministic complexity in the local model. SIAM Journal on Computing, 48(1):122-143, 2019. Google Scholar
  24. Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the local model. SIAM Journal on Computing, 48(1):33-69, 2019. Google Scholar
  25. Yi-Jun Chang, Jan Studenỳ, and Jukka Suomela. Distributed graph problems through an automata-theoretic lens. Theoretical Computer Science, 951:113710, 2023. Google Scholar
  26. Yi-Jun Chang and Hsin-Hao Su. Narrowing the local-congest gaps in sparse networks via expander decompositions. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing (PODC), pages 301-312, 2022. Google Scholar
  27. Shiri Chechik and Doron Mukhtar. Optimal distributed coloring algorithms for planar graphs in the local model. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 787-804. SIAM, 2019. Google Scholar
  28. Aleksander Bjørn Grodt Christiansen. The power of multi-step Vizing chains. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC), pages 1013-1026, 2023. Google Scholar
  29. K.-M. Chung, S. Pettie, and H.-H. Su. Distributed algorithms for the Lovász local lemma and graph coloring. Distributed Computing, 30:261-280, 2017. Google Scholar
  30. Andrzej Czygrinow and Michał Hańćkowiak. Distributed algorithms for weighted problems in sparse graphs. Journal of Discrete Algorithms, 4(4):588-607, 2006. URL: https://doi.org/10.1016/j.jda.2005.07.006.
  31. Andrzej Czygrinow and Michał Hańćkowiak. Distributed almost exact approximations for minor-closed families. In Yossi Azar and Thomas Erlebach, editors, Algorithms - ESA 2006, pages 244-255, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. Google Scholar
  32. Andrzej Czygrinow and Michał Hańćkowiak. Distributed approximation algorithms for weighted problems in minor-closed families. In Proceedings of the 13th Annual International Conference on Computing and Combinatorics (COCOON), pages 515-525, Berlin, Heidelberg, 2007. Springer-Verlag. Google Scholar
  33. Andrzej Czygrinow, Michał Hańćkowiak, and Edyta Szymańska. Distributed approximation algorithms for planar graphs. In Italian Conference on Algorithms and Complexity (CIAC), 2006. Google Scholar
  34. Andrzej Czygrinow, Michal Hanćkowiak, Edyta Szymańska, Wojciech Wawrzyniak, and Marcin Witkowski. Distributed local approximation of the minimum k-tuple dominating set in planar graphs. In International Conference on Principles of Distributed Systems (OPODIS), pages 49-59. Springer, 2014. Google Scholar
  35. Andrzej Czygrinow, Michal Hańćkowiak, and Wojciech Wawrzyniak. Fast distributed approximations in planar graphs. In International Symposium on Distributed Computing (DISC), pages 78-92. Springer, 2008. Google Scholar
  36. Andrzej Czygrinow, Michał Hanćkowiak, Wojciech Wawrzyniak, and Marcin Witkowski. Distributed approximation algorithms for k-dominating set in graphs of bounded genus and linklessly embeddable graphs. Theoretical Computer Science, 809:327-338, 2020. Google Scholar
  37. Peter Davies. Improved distributed algorithms for the lovász local lemma and edge coloring. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4273-4295. SIAM, 2023. Google Scholar
  38. Erik D Demaine, Fedor V Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM (JACM), 52(6):866-893, 2005. Google Scholar
  39. Erik D Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic graph minor theory: Decomposition, approximation, and coloring. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 637-646. IEEE, 2005. Google Scholar
  40. Laurent Feuilloley, Nicolas Bousquet, and Théo Pierron. What can be certified compactly? compact local certification of mso properties in tree-like graphs. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing (PODC), pages 131-140, 2022. Google Scholar
  41. Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric Rémila, and Ioan Todinca. Compact distributed certification of planar graphs. Algorithmica, pages 1-30, 2021. Google Scholar
  42. Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Eric Rémila, and Ioan Todinca. Local certification of graphs with bounded genus. Discrete Applied Mathematics, 325:9-36, 2023. Google Scholar
  43. M. Fischer and M. Ghaffari. Sublogarithmic distributed algorithms for Lovász local lemma with implications on complexity hierarchies. In Proceedings of the 31st International Symposium on Distributed Computing (DISC), pages 18:1-18:16, 2017. Google Scholar
  44. P. Fraigniaud, M. Heinrich, and A. Kosowski. Local conflict coloring. In Proceedings 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 625-634, 2016. Google Scholar
  45. Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. A meta-theorem for distributed certification. In Proceedings of the International Colloquium on Structural Information and Communication Complexity (SIROCCO), pages 116-134. Springer, 2022. Google Scholar
  46. Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II: Low-congestion shortcuts, MST, and min-cut. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 202-219. SIAM, 2016. Google Scholar
  47. Mohsen Ghaffari and Bernhard Haeupler. Low-congestion shortcuts for graphs excluding dense minors. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (PODC), pages 213-221, 2021. Google Scholar
  48. Mohsen Ghaffari, David G Harris, and Fabian Kuhn. On derandomizing local distributed algorithms. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 662-673. IEEE, 2018. Google Scholar
  49. Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved distributed delta-coloring. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (PODC), pages 427-436, 2018. Google Scholar
  50. Mohsen Ghaffari and Merav Parter. Near-optimal distributed DFS in planar graphs. In Andréa Richa, editor, Proceedings of the 31st International Symposium on Distributed Computing (DISC), volume 91 of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1-21:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2017.21.
  51. Jan Grebík and Václav Rozhoň. Local problems on grids from the perspective of distributed algorithms, finitary factors, and descriptive combinatorics. Advances in Mathematics, 431:109241, 2023. Google Scholar
  52. Jan Grebík and Václav Rozhoň. Classification of local problems on paths from the perspective of descriptive combinatorics, 2021. URL: https://arxiv.org/abs/2103.14112.
  53. Christoph Grunau, Václav Rozhoň, and Sebastian Brandt. The landscape of distributed complexities on trees and beyond. In Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing (PODC), pages 37-47, 2022. Google Scholar
  54. Arvind Gupta and Naomi Nishimura. The parallel complexity of tree embedding problems. Journal of Algorithms, 18(1):176-200, 1995. Google Scholar
  55. Bernhard Haeupler, D Ellis Hershkowitz, and David Wajc. Round-and message-optimal distributed graph algorithms. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (PODC), pages 119-128, 2018. Google Scholar
  56. Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without embedding. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC), pages 451-460, 2016. Google Scholar
  57. Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Near-optimal low-congestion shortcuts on bounded parameter graphs. In Proceedings of the International Symposium on Distributed Computing (DISC), pages 158-172. Springer, 2016. Google Scholar
  58. Bernhard Haeupler and Jason Li. Faster Distributed Shortest Path Approximations via Shortcuts. In Ulrich Schmid and Josef Widder, editors, Proceedings of the 32nd International Symposium on Distributed Computing (DISC), volume 121 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1-33:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.DISC.2018.33.
  59. Bernhard Haeupler, Jason Li, and Goran Zuzic. Minor excluded network families admit fast distributed algorithms. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (PODC), pages 465-474, 2018. Google Scholar
  60. Taisuke Izumi, Naoki Kitamura, Takamasa Naruse, and Gregory Schwartzman. Fully polynomial-time distributed computation in low-treewidth graphs. In Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 11-22, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3490148.3538590.
  61. Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths problem in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424-435, 2012. Google Scholar
  62. Christoph Lenzen, Yvonne-Anne Pignolet, and Roger Wattenhofer. Distributed minimum dominating set approximations in restricted families of graphs. Distributed computing, 26(2): 119-137, 2013. Google Scholar
  63. Reut Levi, Moti Medina, and Dana Ron. Property testing of planarity in the congest model. Distributed Computing, 34(1):15-32, 2021. Google Scholar
  64. Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193-201, 1992. Google Scholar
  65. Moni Naor, Merav Parter, and Eylon Yogev. The power of distributed verifiers in interactive proofs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096-1115, 2020. URL: https://doi.org/10.1137/1.9781611975994.67.
  66. Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM J. Comput., 24(6):1259-1277, 1995. URL: https://doi.org/10.1137/S0097539793254571.
  67. Seth Pettie and Hsin-Hao Su. Distributed algorithms for coloring triangle-free graphs. Information and Computation, 243:263-280, 2015. Google Scholar
  68. Neil Robertson and Paul D Seymour. Graph minors. I. excluding a forest. Journal of Combinatorial Theory, Series B, 35(1):39-61, 1983. URL: https://doi.org/10.1016/0095-8956(83)90079-5.
  69. Neil Robertson and Paul D Seymour. Graph minors. V. excluding a planar graph. Journal of Combinatorial Theory, Series B, 41(1):92-114, 1986. URL: https://doi.org/10.1016/0095-8956(86)90030-4.
  70. Neil Robertson and Paul D Seymour. Graph minors. XIII. the disjoint paths problem. Journal of combinatorial theory, Series B, 63(1):65-110, 1995. Google Scholar
  71. Neil Robertson and Paul D Seymour. Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B, 92(2):325-357, 2004. Special Issue Dedicated to Professor W.T. Tutte. URL: https://doi.org/10.1016/j.jctb.2004.08.001.
  72. Will Rosenbaum and Jukka Suomela. Seeing far vs. seeing wide: Volume complexity of local graph problems. In Proceedings of the 39th Symposium on Principles of Distributed Computing (PODC), pages 89-98, 2020. Google Scholar
  73. Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposition and distributed derandomization. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 350-363, 2020. Google Scholar
  74. Petra Scheffler. A linear algorithm for the pathwidth of trees. In Topics in Combinatorics and Graph Theory: Essays in Honour of Gerhard Ringel, pages 613-620, Heidelberg, 1990. Physica-Verlag HD. URL: https://doi.org/10.1007/978-3-642-46908-4_70.
  75. Wojciech Wawrzyniak. A strengthened analysis of a local algorithm for the minimum dominating set problem in planar graphs. Information Processing Letters, 114(3):94-98, 2014. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail