Document

# Approximating Activation Edge-Cover and Facility Location Problems

## File

LIPIcs.MFCS.2019.20.pdf
• Filesize: 0.61 MB
• 14 pages

## Acknowledgements

We thank anonymous referees for many useful comments.

## Cite As

Zeev Nutov, Guy Kortsarz, and Eli Shalom. Approximating Activation Edge-Cover and Facility Location Problems. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 20:1-20:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.MFCS.2019.20

## Abstract

What approximation ratio can we achieve for the Facility Location problem if whenever a client u connects to a facility v, the opening cost of v is at most theta times the service cost of u? We show that this and many other problems are a particular case of the Activation Edge-Cover problem. Here we are given a multigraph G=(V,E), a set R subseteq V of terminals, and thresholds {t^e_u,t^e_v} for each uv-edge e in E. The goal is to find an assignment a={a_v:v in V} to the nodes minimizing sum_{v in V} a_v, such that the edge set E_a={e=uv: a_u >= t^e_u, a_v >= t^e_v} activated by a covers R. We obtain ratio 1+max_{x>=1}(ln x)/(1+x/theta)~= ln theta - ln ln theta for the problem, where theta is a problem parameter. This result is based on a simple generic algorithm for the problem of minimizing a sum of a decreasing and a sub-additive set functions, which is of independent interest. As an application, we get the same ratio for the above variant of {Facility Location}. If for each facility all service costs are identical then we show a better ratio 1+max_{k in N}(H_k-1)/(1+k/theta), where H_k=sum_{i=1}^k 1/i. For the Min-Power Edge-Cover problem we improve the ratio 1.406 of [Calinescu et al, 2019] (achieved by iterative randomized rounding) to 1.2785. For unit thresholds we improve the ratio 73/60~=1.217 of [Calinescu et al, 2019] to 1555/1347~=1.155.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Approximation algorithms
##### Keywords
• generalized min-covering problem
• activation edge-cover
• facility location
• minimum power
• approximation algorithm

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. S. Athanassopoulos, I. Caragiannis, and C. Kaklamanis. Analysis of Approximation Algorithms for k-Set Cover Using Factor-Revealing Linear Programs. Theory Comput. Syst., 45(3):555-576, 2009.
2. Reuven Bar-Yehuda. One for the price of two: A unified approach for approximating covering problems. Algorithmica, 27(2):131-144, 2000.
3. J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner Tree Approximation via Iterative Randomized Rounding. J. ACM, 60(1):6:1-6:33, 2013.
4. G. Calinescu, G. Kortsarz, and Z. Nutov. Improved approximation algorithms for minimum power covering problems. In WAOA, pages 134-148, 2018.
5. K. Chandrasekaran, R. M. Karp, E. Moreno-Centeno, and S. Vempala. Algorithms for Implicit Hitting Set Problems. In SODA, pages 614-629, 2011.
6. V. Chvatal. Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations Research, 4(3):233-235, 1979.
7. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W function. Advances in Computational Mathematics, 5:329-359, 1996.
8. Rong-chii Duh and Martin Fürer. Approximation of k-set cover by semi-local optimization. In STOC, pages 256-264, 1997.
9. J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449-467, 1965.
10. U. Feige. A threshold of ln n for approximating set cover. J. of the ACM, 45(4):634-652, 1998.
11. M. Fürer and H. Yu. Packing-Based Approximation Algorithm for the k-Set Cover Problem. In ISAAC, pages 484-493, 2011.
12. M. X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen. Matroids and integrality gaps for hypergraphic steiner tree relaxations. In STOC, pages 1161-1176, 2012.
13. C. Gröpl, S. Hougardy, T. Nierhoff, and H. J. Prömel. Approximation Algorithms for the Steiner Tree Problem in Graphs. In X. Z. Cheng and D-. Z. Du, editors, Steiner Trees in Industry, pages 235-279. Kluwer Academic Publishers, 2001.
14. M. Hajiaghayi, G. Kortsarz, V. Mirrokni, and Z. Nutov. Power optimization for connectivity problems. Math. Programming, 110(1):195-208, 2007.
15. A. Hoorfar and M. Hassani. Inequalities on the Lambert W Function and Hyperpower Function. Journal of Inequalities in Pure and Applied Mathematics (IPAM), 9(2), 2008. Article 51, 5 pp.
16. D. S. Johnson. Approximation Algorithms for Combinatorial Problems. J. Comput. Syst. Sci., 9(3):256-278, 1974.
17. G. Kortsarz and Z. Nutov. Approximating minimum-power edge-covers and 2,3-connectivity. Discrete Applied Mathematics, 157:1840-1847, 2009.
18. A. Levin. Approximating the unweighted k-set cover problem: greedy meets local search. In WAOA, pages 290-301, 2006.
19. Z. Nutov. Activation Network Design Problems. In T. F. Gonzalez, editor, Handbook on Approximation Algorithms and Metaheuristics, Second Edition, volume 2, chapter 15. Chapman & Hall/CRC, 2018.
20. D. Panigrahi. Survivable Network Design Problems in Wireless Networks. In SODA, pages 1014-1027, 2011.
21. R. Raz and S. Safra. A sub constant error probability low degree test, and a sub constant error probability PCP characterization of NP. In STOC, pages 475-484, 1997.
22. G. Robins and A. Zelikovsky. Tighter Bounds for Graph Steiner Tree Approximation. SIAM J. Discrete Math., 19(1):122-134, 2005.
23. A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer-Verlag Berlin, Heidelberg New York, 2004.
24. D B. Shmoys. Approximation algorithms for facility location problems. In APPROX, pages 265-274, 2000.
25. P. Slavik. A Tight Analysis of the Greedy Algorithm for Set Cover. J. Algorithms, 25(2):237-254, 1997.
26. J. Vygen. Approximation algorithms for facility location problems (Lecture Notes). Technical Report 05950, Research Institute for Discrete Mathematics, University of Bonn, 2005.
27. L. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica, 2(4):385-393, 1982.
28. N. E. Young. Greedy Set-Cover Algorithms. In Encyclopedia of Algorithms, pages 886-889. Springer, 2016.
X

Feedback for Dagstuhl Publishing