A regular language R of finite words induces three repetition languages of infinite words: the language lim(R), which contains words with infinitely many prefixes in R, the language ∞ R, which contains words with infinitely many disjoint subwords in R, and the language R^ω, which contains infinite concatenations of words in R. Specifying behaviors, the three repetition languages provide three different ways of turning a specification of a finite behavior into an infinite one. We study the expressive power required for recognizing repetition languages, in particular whether they can always be recognized by a deterministic Büchi word automaton (DBW), the blow up in going from an automaton for R to automata for the repetition languages, and the complexity of related decision problems. For lim R and ∞ R, most of these problems have already been studied or are easy. We focus on R^ω. Its study involves some new and interesting results about additional repetition languages, in particular R^#, which contains exactly all words with unboundedly many concatenations of words in R. We show that R^ω is DBW-recognizable iff R^# is ω-regular iff R^# = R^ω, and there are languages for which these criteria do not hold. Thus, R^ω need not be DBW-recognizable. In addition, when exists, the construction of a DBW for R^ω may involve a 2^{O(n log n)} blow-up, and deciding whether R^ω is DBW-recognizable, for R given by a nondeterministic automaton, is PSPACE-complete. Finally, we lift the difference between R^# and R^ω to automata on finite words and study a variant of Büchi automata where a word is accepted if (possibly different) runs on it visit accepting states unboundedly many times.
@InProceedings{kupferman_et_al:LIPIcs.MFCS.2020.59, author = {Kupferman, Orna and Leshkowitz, Ofer}, title = {{On Repetition Languages}}, booktitle = {45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)}, pages = {59:1--59:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-159-7}, ISSN = {1868-8969}, year = {2020}, volume = {170}, editor = {Esparza, Javier and Kr\'{a}l', Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.59}, URN = {urn:nbn:de:0030-drops-127268}, doi = {10.4230/LIPIcs.MFCS.2020.59}, annote = {Keywords: B\"{u}chi automata, Expressive power, Succinctness} }
Feedback for Dagstuhl Publishing