An automaton is unambiguous if for every input it has at most one accepting computation. An automaton is k-ambiguous (for k > 0) if for every input it has at most k accepting computations. An automaton is boundedly ambiguous if there is k ∈ ℕ, such that for every input it has at most k accepting computations. An automaton is finitely (respectively, countably) ambiguous if for every input it has at most finitely (respectively, countably) many accepting computations. The degree of ambiguity of a regular language is defined in a natural way. A language is k-ambiguous (respectively, boundedly, finitely, countably ambiguous) if it is accepted by a k-ambiguous (respectively, boundedly, finitely, countably ambiguous) automaton. Over finite words every regular language is accepted by a deterministic automaton. Over finite trees every regular language is accepted by an unambiguous automaton. Over ω-words every regular language is accepted by an unambiguous Büchi automaton [Arnold, 1983] and by a deterministic parity automaton. Over infinite trees there are ambiguous languages [Carayol et al., 2010]. We show that over infinite trees there is a hierarchy of degrees of ambiguity: For every k > 1 there are k-ambiguous languages which are not k-1 ambiguous; there are finitely (respectively countably, uncountably) ambiguous languages which are not boundedly (respectively finitely, countably) ambiguous.
@InProceedings{rabinovich_et_al:LIPIcs.MFCS.2020.80, author = {Rabinovich, Alexander and Tiferet, Doron}, title = {{Ambiguity Hierarchy of Regular Infinite Tree Languages}}, booktitle = {45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)}, pages = {80:1--80:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-159-7}, ISSN = {1868-8969}, year = {2020}, volume = {170}, editor = {Esparza, Javier and Kr\'{a}l', Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.80}, URN = {urn:nbn:de:0030-drops-127495}, doi = {10.4230/LIPIcs.MFCS.2020.80}, annote = {Keywords: automata on infinite trees, ambiguous automata, monadic second-order logic} }
Feedback for Dagstuhl Publishing