In this work, we study two natural generalizations of clique-width introduced by Martin Fürer. Multi-clique-width (mcw) allows every vertex to hold multiple labels [ITCS 2017], while for fusion-width (fw) we have a possibility to merge all vertices of a certain label [LATIN 2014]. Fürer has shown that both parameters are upper-bounded by treewidth thus making them more appealing from an algorithmic perspective than clique-width and asked for applications of these parameters for problem solving. First, we determine the relation between these two parameters by showing that mcw ≤ fw + 1. Then we show that when parameterized by multi-clique-width, many problems (e.g., Connected Dominating Set) admit algorithms with the same running time as for clique-width despite the exponential gap between these two parameters. For some problems (e.g., Hamiltonian Cycle) we show an analogous result for fusion-width: For this we present an alternative view on fusion-width by introducing so-called glue-expressions which might be interesting on their own. All algorithms obtained in this work are tight up to (Strong) Exponential Time Hypothesis.
@InProceedings{chekan_et_al:LIPIcs.MFCS.2023.35, author = {Chekan, Vera and Kratsch, Stefan}, title = {{Tight Algorithmic Applications of Clique-Width Generalizations}}, booktitle = {48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)}, pages = {35:1--35:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-292-1}, ISSN = {1868-8969}, year = {2023}, volume = {272}, editor = {Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.35}, URN = {urn:nbn:de:0030-drops-185699}, doi = {10.4230/LIPIcs.MFCS.2023.35}, annote = {Keywords: Parameterized complexity, connectivity problems, clique-width} }
Feedback for Dagstuhl Publishing