Capturing the Shape of a Point Set with a Line Segment

Authors Nathan van Beusekom , Marc van Kreveld , Max van Mulken , Marcel Roeloffzen , Bettina Speckmann , Jules Wulms



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.26.pdf
  • Filesize: 0.95 MB
  • 18 pages

Document Identifiers

Author Details

Nathan van Beusekom
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Marc van Kreveld
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Max van Mulken
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Marcel Roeloffzen
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Bettina Speckmann
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Jules Wulms
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Cite AsGet BibTex

Nathan van Beusekom, Marc van Kreveld, Max van Mulken, Marcel Roeloffzen, Bettina Speckmann, and Jules Wulms. Capturing the Shape of a Point Set with a Line Segment. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.26

Abstract

Detecting location-correlated groups in point sets is an important task in a wide variety of applications areas. In addition to merely detecting such groups, the group’s shape carries meaning as well. In this paper, we represent a group’s shape using a simple geometric object, a line segment. Specifically, given a radius r, we say a line segment is representative of a point set P of n points if it is within distance r of each point p ∈ P. We aim to find the shortest such line segment. This problem is equivalent to stabbing a set of circles of radius r using the shortest line segment. We describe an algorithm to find the shortest representative segment in O(n log h + h log³h) time, where h is the size of the convex hull of P. Additionally, we show how to maintain a stable approximation of the shortest representative segment when the points in P move.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Shape descriptor
  • Stabbing
  • Rotating calipers

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal, Alon Efrat, Micha Sharir, and Sivan Toledo. Computing a segment center for a planar point set. Journal of Algorithms, 15(2):314-323, 1993. URL: https://doi.org/10.1006/jagm.1993.1043.
  2. Ken Been, Martin Nöllenburg, Sheung-Hung Poon, and Alexander Wolff. Optimizing active ranges for consistent dynamic map labeling. Computational Geometry: Theory and Applications, 43(3):312-328, 2010. URL: https://doi.org/10.1016/j.comgeo.2009.03.006.
  3. Sergei Bespamyatnikh, Binay Bhattacharya, David Kirkpatrick, and Michael Segal. Mobile facility location. In Proc. 4th Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIALM), pages 46-53, 2000. URL: https://doi.org/10.1145/345848.345858.
  4. Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete & Computational Geometry, 16(4):361-368, 1996. URL: https://doi.org/10.1007/BF02712873.
  5. Timothy M. Chan, Thomas C. van Dijk, Krzysztof Fleszar, Joachim Spoerhase, and Alexander Wolff. Stabbing rectangles by line segments-how decomposition reduces the shallow-cell complexity. In Proc. 29th International Symposium on Algorithms and Computation (ISAAC), pages 61:1-61:13, 2018. URL: https://doi.org/10.4230/LIPICS.ISAAC.2018.61.
  6. Danny Z. Chen and Haitao Wang. Approximating points by a piecewise linear function. Algorithmica, 66(3):682-713, 2013. URL: https://doi.org/10.1007/s00453-012-9658-y.
  7. Merce Claverol, Elena Khramtcova, Evanthia Papadopoulou, Maria Saumell, and Carlos Seara. Stabbing circles for sets of segments in the plane. Algorithmica, 80:849-884, 2018. URL: https://doi.org/10.1007/s00453-017-0299-z.
  8. Mark de Berg and Dirk H. P. Gerrits. Labeling moving points with a trade-off between label speed and label overlap. In Proc. 21st European Symposium on Algorithms (ESA), pages 373-384, 2013. URL: https://doi.org/10.1007/978-3-642-40450-4_32.
  9. Mark de Berg, Marcel Roeloffzen, and Bettina Speckmann. Kinetic 2-centers in the black-box model. In Proc. 29th Symposium on Computational Geometry (SoCG), pages 145-154, 2013. URL: https://doi.org/10.1145/2462356.2462393.
  10. José Miguel Díaz-Báñez, Matias Korman, Pablo Pérez-Lantero, Alexander Pilz, Carlos Seara, and Rodrigo I. Silveira. New results on stabbing segments with a polygon. Computational Geometry, 48(1):14-29, 2015. URL: https://doi.org/10.1016/j.comgeo.2014.06.002.
  11. Darko Dimitrov, Christian Knauer, Klaus Kriegel, and Günter Rote. Bounds on the quality of the PCA bounding boxes. Computational Geometry, 42(8):772-789, 2009. URL: https://doi.org/10.1016/j.comgeo.2008.02.007.
  12. Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern recognition, 41(10):3224-3236, 2008. URL: https://doi.org/10.1016/j.patcog.2008.03.023.
  13. Stephane Durocher and David Kirkpatrick. The steiner centre of a set of points: Stability, eccentricity, and applications to mobile facility location. International Journal of Computational Geometry & Applications, 16(04):345-371, 2006. URL: https://doi.org/10.1142/S0218195906002075.
  14. Stephane Durocher and David Kirkpatrick. Bounded-velocity approximation of mobile Euclidean 2-centres. International Journal of Computational Geometry & Applications, 18(03):161-183, 2008. URL: https://doi.org/10.1142/S021819590800257X.
  15. Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On the shape of a set of points in the plane. IEEE Transactions on information theory, 29(4):551-559, 1983. URL: https://doi.org/10.1109/TIT.1983.1056714.
  16. Herbert Edelsbrunner, Hermann A. Maurer, Franco P. Preparata, Arnold L. Rosenberg, Emo Welzl, and Derick Wood. Stabbing line segments. BIT Numerical Mathematics, 22:274-281, 1982. URL: https://doi.org/10.1007/BF01934440.
  17. Alon Efrat and Micha Sharir. A near-linear algorithm for the planar segment-center problem. Discrete & Computational Geometry, 16(3):239-257, 1996. URL: https://doi.org/10.1007/BF02711511.
  18. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. 2nd International Conference on Knowledge Discovery and Data Mining (KDD), pages 226-231, 1996. URL: https://doi.org/10.5555/3001460.3001507.
  19. Herbert Freeman and Ruth Shapira. Determining the minimum-area encasing rectangle for an arbitrary closed curve. Communications of the ACM, 18(7):409-413, 1975. URL: https://doi.org/10.1145/360881.360919.
  20. Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. Sliding labels for dynamic point labeling. In Proc. 23rd Canadian Conference on Computational Geometry (CCCG), pages 205-210, 2011. Google Scholar
  21. Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. Consistent labeling of rotating maps. Journal of Computational Geometry, 7(1):308-331, 2016. URL: https://doi.org/10.20382/jocg.v7i1a15.
  22. S. Louis Hakimi and Edward F. Schmeichel. Fitting polygonal functions to a set of points in the plane. CVGIP: Graphical Models and Image Processing, 53(2):132-136, 1991. URL: https://doi.org/10.1016/1049-9652(91)90056-P.
  23. John A. Hartigan and Manchek A. Wong. Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society., 28(1):100-108, 1979. URL: https://doi.org/10.2307/2346830.
  24. Hiroshi Imai, DT Lee, and Chung-Do Yang. 1-segment center problems. ORSA Journal on Computing, 4(4):426-434, 1992. URL: https://doi.org/10.1287/ijoc.4.4.426.
  25. Konstantin Kobylkin. Stabbing line segments with disks: complexity and approximation algorithms. In Proc. 6th International Conference on Analysis of Images, Social Networks and Texts (AIST), pages 356-367, 2017. URL: https://doi.org/10.1007/978-3-319-73013-4_33.
  26. Wouter Meulemans, Bettina Speckmann, Kevin Verbeek, and Jules Wulms. A framework for algorithm stability and its application to kinetic euclidean MSTs. In Proc. 13th Latin American Symposium on Theoretical Informatics (LATIN), pages 805-819, 2018. URL: https://doi.org/10.1007/978-3-319-77404-6_58.
  27. Wouter Meulemans, Kevin Verbeek, and Jules Wulms. Stability analysis of kinetic orientation-based shape descriptors. arXiv preprint, 2019. URL: https://arxiv.org/abs/1903.11445.
  28. Martin Nöllenburg, Valentin Polishchuk, and Mikko Sysikaski. Dynamic one-sided boundary labeling. In Proc. 18th International Conference on Advances in Geographic Information Systems (SIGSPATIAL), pages 310-319, 2010. URL: https://doi.org/10.1145/1869790.1869834.
  29. Lena Marie Schlipf. Stabbing and Covering Geometric Objects in the Plane. PhD thesis, FU Berlin, 2014. Google Scholar
  30. Ariana Strandburg-Peshkin, Damien R. Farine, Margaret C. Crofoot, and Iain D. Couzin. Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. eLife, 6:e19505, 2016. URL: https://doi.org/10.7554/eLife.19505.
  31. Godfried T. Toussaint. Solving geometric problems with the rotating calipers. In Proc. 2nd Mediterranean Electrotechnical Conference (MELECON), volume 1, page A10, 1983. Google Scholar
  32. Der Perng Wang. A new algorithm for fitting a rectilinear x-monotone curve to a set of points in the plane. Pattern Recognition Letters, 23(1-3):329-334, 2002. URL: https://doi.org/10.1016/S0167-8655(01)00130-1.