Distance to Transitivity: New Parameters for Taming Reachability in Temporal Graphs

Authors Arnaud Casteigts , Nils Morawietz , Petra Wolf



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.36.pdf
  • Filesize: 0.8 MB
  • 17 pages

Document Identifiers

Author Details

Arnaud Casteigts
  • Department of Computer Science, University of Geneva, Switzerland
Nils Morawietz
  • Institute of Computer Science, Friedrich Schiller University Jena, Germany
Petra Wolf
  • LaBRI, CNRS, Université de Bordeaux, Bordeaux INP, France

Cite AsGet BibTex

Arnaud Casteigts, Nils Morawietz, and Petra Wolf. Distance to Transitivity: New Parameters for Taming Reachability in Temporal Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.36

Abstract

A temporal graph is a graph whose edges only appear at certain points in time. Reachability in these graphs is defined in terms of paths that traverse the edges in chronological order (temporal paths). This form of reachability is neither symmetric nor transitive, the latter having important consequences on the computational complexity of even basic questions, such as computing temporal connected components. In this paper, we introduce several parameters that capture how far a temporal graph 𝒢 is from being transitive, namely, vertex-deletion distance to transitivity and arc-modification distance to transitivity, both being applied to the reachability graph of 𝒢. We illustrate the impact of these parameters on the temporal connected component problem, obtaining several tractability results in terms of fixed-parameter tractability and polynomial kernels. Significantly, these results are obtained without restrictions of the underlying graph, the snapshots, or the lifetime of the input graph. As such, our results isolate the impact of non-transitivity and confirm the key role that it plays in the hardness of temporal graph problems.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Mathematics of computing → Discrete mathematics
Keywords
  • Temporal graphs
  • Parameterized complexity
  • Reachability
  • Transitivity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eleni C Akrida, Jurek Czyzowicz, Leszek Gasieniec, Łukasz Kuszner, and Paul G Spirakis. Temporal flows in temporal networks. Journal of Computer and System Sciences, 103:46-60, 2019. Google Scholar
  2. Eleni C Akrida, Leszek Gąsieniec, George B Mertzios, and Paul G Spirakis. The complexity of optimal design of temporally connected graphs. Theory of Computing Systems, 61:907-944, 2017. Google Scholar
  3. Eleni C Akrida, George B Mertzios, Paul G Spirakis, and Christoforos Raptopoulos. The temporal explorer who returns to the base. Journal of Computer and System Sciences, 120:179-193, 2021. Google Scholar
  4. Emmanuel Arrighi, Fedor V. Fomin, Petr A. Golovach, and Petra Wolf. Kernelizing temporal exploration problems. In Neeldhara Misra and Magnus Wahlström, editors, 18th International Symposium on Parameterized and Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The Netherlands, volume 285 of LIPIcs, pages 1:1-1:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.IPEC.2023.1.
  5. Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum temporally connected subgraphs. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. Google Scholar
  6. Sandeep Bhadra and Afonso Ferreira. Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In Ad-Hoc, Mobile, and Wireless Networks: Second International Conference, ADHOC-NOW2003, Montreal, Canada, October 8-10, 2003. Proceedings 2, pages 259-270. Springer, 2003. Google Scholar
  7. Benjamin Merlin Bumpus and Kitty Meeks. Edge exploration of temporal graphs. Algorithmica, 85(3):688-716, 2023. Google Scholar
  8. Arnaud Casteigts. Finding structure in dynamic networks. CoRR, abs/1807.07801, 2018. URL: https://arxiv.org/abs/1807.07801.
  9. Arnaud Casteigts and Timothée Corsini. In search of the lost tree: Hardness and relaxation of spanning trees in temporal graphs. In 31th Colloquium on Structural Information and Communication Complexity (SIROCCO), 2024. Google Scholar
  10. Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding temporal paths under waiting time constraints. Algorithmica, 83(9):2754-2802, 2021. Google Scholar
  11. Arnaud Casteigts, Michael Raskin, Malte Renken, and Viktor Zamaraev. Sharp thresholds in random simple temporal graphs. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 319-326. IEEE Computer Society, 2022. Google Scholar
  12. Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj, and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Information and Computation, 201(2):216-231, 2005. Google Scholar
  13. Isnard Lopes Costa, Raul Lopes, Andrea Marino, and Ana Silva. On Computing Large Temporal (Unilateral) Connected Components. In Combinatorial Algorithms - 34th International Workshop, IWOCA 2023, Tainan, Taiwan, June 7-10, 2023, Proceedings, volume 13889 of Lecture Notes in Computer Science, pages 282-293. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-34347-6_24.
  14. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  15. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. Google Scholar
  16. Jessica Enright, Kitty Meeks, George B Mertzios, and Viktor Zamaraev. Deleting edges to restrict the size of an epidemic in temporal networks. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Google Scholar
  17. Thomas Erlebach and Jakob T Spooner. Parameterized temporal exploration problems. In 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  18. Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche. As time goes by: reflections on treewidth for temporal graphs. In Treewidth, Kernels, and Algorithms: Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, pages 49-77. Springer, 2020. Google Scholar
  19. Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche. Temporal graph classes: A view through temporal separators. Theoretical Computer Science, 806:197-218, 2020. Google Scholar
  20. Niels Grüttemeier and Christian Komusiewicz. On the Relation of Strong Triadic Closure and Cluster Deletion. Algorithmica, 82(4):853-880, 2020. Google Scholar
  21. David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for temporal networks. In Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages 504-513, 2000. Google Scholar
  22. John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is np-complete. Journal of Computer and System Sciences, 20(2):219-230, 1980. URL: https://doi.org/10.1016/0022-0000(80)90060-4.
  23. Jason Schoeters, Eric Sanlaville, Stefan Balev, and Yoann Pigné. Temporally connected components. Available at SSRN 4590651, 2024. Google Scholar
  24. Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146-160, 1972. URL: https://doi.org/10.1137/0201010.
  25. Mathias Weller, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. On making directed graphs transitive. Journal of Computer and System Sciences, 78(2):559-574, 2012. URL: https://doi.org/10.1016/J.JCSS.2011.07.001.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail