Document

# Approximating Bipartite Minimum Vertex Cover in the CONGEST Model

## File

LIPIcs.OPODIS.2020.29.pdf
• Filesize: 0.52 MB
• 16 pages

## Cite As

Salwa Faour and Fabian Kuhn. Approximating Bipartite Minimum Vertex Cover in the CONGEST Model. In 24th International Conference on Principles of Distributed Systems (OPODIS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 184, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.OPODIS.2020.29

## Abstract

We give efficient distributed algorithms for the minimum vertex cover problem in bipartite graphs in the CONGEST model. From Kőnig’s theorem, it is well known that in bipartite graphs the size of a minimum vertex cover is equal to the size of a maximum matching. We first show that together with an existing O(nlog n)-round algorithm for computing a maximum matching, the constructive proof of Kőnig’s theorem directly leads to a deterministic O(nlog n)-round CONGEST algorithm for computing a minimum vertex cover. We then show that by adapting the construction, we can also convert an approximate maximum matching into an approximate minimum vertex cover. Given a (1-δ)-approximate matching for some δ > 1, we show that a (1+O(δ))-approximate vertex cover can be computed in time O (D+poly((log n)/δ)), where D is the diameter of the graph. When combining with known graph clustering techniques, for any ε ∈ (0,1], this leads to a poly((log n)/ε)-time deterministic and also to a slightly faster and simpler randomized O((log n)/ε³)-round CONGEST algorithm for computing a (1+ε)-approximate vertex cover in bipartite graphs. For constant ε, the randomized time complexity matches the Ω(log n) lower bound for computing a (1+ε)-approximate vertex cover in bipartite graphs even in the LOCAL model. Our results are also in contrast to the situation in general graphs, where it is known that computing an optimal vertex cover requires Ω̃(n²) rounds in the CONGEST model and where it is not even known how to compute any (2-ε)-approximation in time o(n²).

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Distributed algorithms
• Networks → Network algorithms
##### Keywords
• distributed vertex cover
• distributed graph algorithms
• distributed optimization
• bipartite vertex cover

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. M. Ahmadi, F. Kuhn, and R. Oshman. Distributed approximate maximum matching in the CONGEST model. In Proc. 32nd Symp. on Distributed Computing (DISC), pages 6:1-6:17, 2018.
2. N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms, 7(4):567-583, 1986.
3. M. Åstrand, P. Floréen, V. Polishchuk, J. Rybicki, J. Suomela, and J. Uitto. A local 2-approximation algorithm for the vertex cover problem. In Proc. 23rd Symp. on Distributed Computing (DISC), pages 191-205, 2009.
4. N. Bachrach, K. Censor-Hillel, M. Dory, Y. Efron, D. Leitersdorf, and A. Paz. Hardness of distributed optimization. In Proc. 38th ACM Symp. on Principles of Distributed Computing (PODC), pages 238-247, 2019.
5. R. Bar-Yehuda, K. Censor-Hillel, M. Ghaffari, and G. Schwartzman. Distributed approximation of maximum independent set and maximum matching. CoRR, abs/1708.00276, 2017. Conference version at PODC 2017.
6. R. Bar-Yehuda, K. Censor-Hillel, Y. Maus, S. Pai, and S. V. Pemmaraju. Distributed approximation on power graphs. In Proc. 39th ACM Symp. on Principles of Distributed Computing (PODC), pages 501-510, 2020.
7. R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman. A distributed (2+ε)-approximation for vertex cover in o(logδ/ε log log δ) rounds. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pages 3-8, 2016.
8. L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of distributed symmetry breaking. In Proceedings of 53th Symposium on Foundations of Computer Science (FOCS), 2012.
9. R. Ben-Basat, G. Even, K. Kawarabayashi, and G. Schwartzman. Optimal distributed covering algorithms. In Proc. 33rd Symp. on Distributed Computing (DISC), pages 5:1-5:15, 2019.
10. G. E. Blelloch, A. Gupta, I. Koutis, G. L. Miller, R. Peng, and K. Tangwongsan. Nearly-linear work parallel SDD solvers, low-diameter decomposition, and low-stretch subgraphs. Theory Comput. Syst., 55(3):521-554, 2014.
11. K. Censor-Hillel, S. Khoury, and A. Paz. Quadratic and near-quadratic lower bounds for the CONGEST model. In Proc. 31st Symp. on Distributed Computing (DISC), pages 10:1-10:16, 2017.
12. R. Diestel. Graph Theory, chapter 2.1, pages 35-58. Springer, Berlin, 3rd edition, 2005.
13. S. Faour and F. Kuhn. Approximate bipartite vertex cover in the CONGEST model. CoRR, abs/2011.10014, 2020.
14. U. Feige, Y. Mansour, and R. E. Schapire. Learning and inference in the presence of corrupted inputs. In Proc. 28th Conf. on Learning Theory (COLT), pages 637-657, 2015.
15. M. Fischer. Improved deterministic distributed matching via rounding. In Proc. 31st Symp. on Distributed Computing (DISC), pages 17:1-17:15, 2017.
16. M. Ghaffari, C. Jin, and D. Nilis. A massively parallel algorithm for minimum weight vertex cover. In Proc. 32nd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pages 259-268, 2020.
17. M. Ghaffari, F. Kuhn, and Y. Maus. On the complexity of local distributed graph problems. In Proc. 39th ACM Symp. on Theory of Computing (STOC), pages 784-797, 2017.
18. M. Göös and J. Suomela. No sublogarithmic-time approximation scheme for bipartite vertex cover. Distributed Computing, 27(6):435-443, 2014.
19. F. Grandoni, J. Könemann, and A. Panconesi. Distributed weighted vertex cover via maximal matchings. ACM Trans. Algorithms, 5(1):6:1-6:12, 2008.
20. F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio. A primal-dual bicriteria distributed algorithm for capacitated vertex cover. SIAM J. Comput., 38(3):825-840, 2008.
21. J. E. Hopcroft and R. M. Karp. An n^5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 1973.
22. A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal matching. Inf. Process. Lett., 22(2):77-80, 1986.
23. D. Kőnig. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38:116-119, 1931.
24. Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci., 74(3):335-349, 2008.
25. F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In Proceedings of 23rd ACM Symposium on Principles of Distributed Computing (PODC), pages 300-309, 2004.
26. F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In Proceedings of 17th Symposium on Discrete Algorithms (SODA), pages 980-989, 2006.
27. N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441-454, 1993.
28. Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate matching. J. ACM, 62(5):38:1-38:17, 2015.
29. M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing, 15:1036-1053, 1986.
30. G. L. Miller, R. Peng, and S. C. Xu. Parallel graph decompositions using random shifts. In Proc. 25th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pages 196-203, 2013.
31. D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
32. V. Rozhoň and M. Ghaffari. Polylogarithmic-time deterministic network decomposition and distributed derandomization. In Proc. 52nd ACM Symp. on Theory of Computing (STOC), pages 350-363, 2020.
X

Feedback for Dagstuhl Publishing