On the Convergence Time in Graphical Games: A Locality-Sensitive Approach

Authors Juho Hirvonen , Laura Schmid, Krishnendu Chatterjee, Stefan Schmid



PDF
Thumbnail PDF

File

LIPIcs.OPODIS.2023.11.pdf
  • Filesize: 0.82 MB
  • 24 pages

Document Identifiers

Author Details

Juho Hirvonen
  • Aalto University, Finland
  • Helsinki Institute for Information Technology (HIIT), Espoo, Finland
Laura Schmid
  • Kim Jaechul Graduate School of AI, KAIST, Seoul, Republic of Korea
Krishnendu Chatterjee
  • IST Austria, Klosterneuburg, Austria
Stefan Schmid
  • TU Berlin, Germany
  • Weizenbaum Institute, Berlin, Germany

Acknowledgements

We thank the anonymous reviewers for their feedback.

Cite AsGet BibTex

Juho Hirvonen, Laura Schmid, Krishnendu Chatterjee, and Stefan Schmid. On the Convergence Time in Graphical Games: A Locality-Sensitive Approach. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 11:1-11:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.OPODIS.2023.11

Abstract

Graphical games are a useful framework for modeling the interactions of (selfish) agents who are connected via an underlying topology and whose behaviors influence each other. They have wide applications ranging from computer science to economics and biology. Yet, even though an agent’s payoff only depends on the actions of their direct neighbors in graphical games, computing the Nash equilibria and making statements about the convergence time of "natural" local dynamics in particular can be highly challenging. In this work, we present a novel approach for classifying complexity of Nash equilibria in graphical games by establishing a connection to local graph algorithms, a subfield of distributed computing. In particular, we make the observation that the equilibria of graphical games are equivalent to locally verifiable labelings (LVL) in graphs; vertex labelings which are verifiable with constant-round local algorithms. This connection allows us to derive novel lower bounds on the convergence time to equilibrium of best-response dynamics in graphical games. Since we establish that distributed convergence can sometimes be provably slow, we also introduce and give bounds on an intuitive notion of "time-constrained" inefficiency of best responses. We exemplify how our results can be used in the implementation of mechanisms that ensure convergence of best responses to a Nash equilibrium. Our results thus also give insight into the convergence of strategy-proof algorithms for graphical games, which is still not well understood.

Subject Classification

ACM Subject Classification
  • Theory of computation → Network games
  • Theory of computation → Algorithmic game theory
Keywords
  • distributed computing
  • Nash equilibria
  • mechanism design
  • best-response dynamics

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Guillermo Abramson and Marcelo Kuperman. Social games in a social network. Physical Review E, 63(3):030901, 2001. URL: https://doi.org/10.1103/PhysRevE.63.030901.
  2. James Aspnes, Kevin Chang, and Aleksandr Yampolskiy. Inoculation strategies for victims of viruses and the sum-of-squares partition problem. Journal of Computer and System Sciences, 72(6):1077-1093, 2006. URL: https://doi.org/10.1016/J.JCSS.2006.02.003.
  3. Guy Avni, Thomas A. Henzinger, and Orna Kupferman. Dynamic resource allocation games. In Algorithmic Game Theory, pages 153-166. Springer Berlin Heidelberg, 2016. URL: https://doi.org/10.1007/978-3-662-53354-3_13.
  4. Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Classification of distributed binary labeling problems. CoRR, abs/1911.13294, 2019. URL: https://arxiv.org/abs/1911.13294.
  5. Alkida Balliu, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and Jukka Suomela. New classes of distributed time complexity. In Proc. 50th ACM Symposium on Theory of Computing (STOC 2018), pages 1307-1318. ACM Press, 2018. URL: https://doi.org/10.1145/3188745.3188860.
  6. Alkida Balliu, Juho Hirvonen, Christoph Lenzen, Dennis Olivetti, and Jukka Suomela. Locality of not-so-weak coloring. In Proc. 26th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2019), volume 11639 of Lecture Notes in Computer Science, pages 37-51. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-24922-9_3.
  7. Leonid Barenboim. Deterministic (Δ + 1)-coloring in sublinear (in Δ) time in static, dynamic, and faulty networks. J. ACM, 63(5):47:1-47:22, 2016. URL: https://doi.org/10.1145/2979675.
  8. Yann Bramoullé. Anti-coordination and social interactions. Games and Economic Behavior, 58(1):30-49, 2007. URL: https://doi.org/10.1016/J.GEB.2005.12.006.
  9. Yann Bramoullé and Rachel Kranton. Public goods in networks. Journal of Economic Theory, 135(1):478-494, 2007. URL: https://doi.org/10.1016/J.JET.2006.06.006.
  10. Sebastian Brandt. An automatic speedup theorem for distributed problems, 2019. URL: https://arxiv.org/abs/1902.09958.
  11. Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local lemma. In Proc. 48th ACM Symposium on Theory of Computing (STOC 2016), pages 479-488. ACM Press, 2016. URL: https://doi.org/10.1145/2897518.2897570.
  12. Sebastian Brandt, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Patric R J Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznański. LCL problems on grids. In Proc. 36th ACM Symposium on Principles of Distributed Computing (PODC 2017), pages 101-110. ACM Press, 2017. URL: https://doi.org/10.1145/3087801.3087833.
  13. Damien Challet and Y-C Zhang. Emergence of cooperation and organization in an evolutionary game. Physica A: Statistical Mechanics and its Applications, 246(3-4):407-418, 1997. URL: https://doi.org/10.1016/S0378-4371(97)00419-6.
  14. Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. The Complexity of Distributed Edge Coloring with Small Palettes. In Proc. 29th ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pages 2633-2652. Society for Industrial and Applied Mathematics, 2018. URL: https://doi.org/10.1137/1.9781611975031.168.
  15. Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An Exponential Separation between Randomized and Deterministic Complexity in the LOCAL Model. In Proc. 57th IEEE Symposium on Foundations of Computer Science (FOCS 2016), pages 615-624. IEEE, 2016. URL: https://doi.org/10.1109/FOCS.2016.72.
  16. Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized and deterministic complexity in the LOCAL model. SIAM J. Comput., 48(1):122-143, 2019. URL: https://doi.org/10.1137/17M1117537.
  17. Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM J. Comput., 48(1):33-69, 2019. URL: https://doi.org/10.1137/17M1157957.
  18. Todd L Cherry, Stephen J Cotten, and Stephan Kroll. Heterogeneity, coordination and the provision of best-shot public goods. Experimental Economics, 16(4):497-510, 2013. URL: https://doi.org/10.1007/s10683-012-9349-1.
  19. Simon Collet, Pierre Fraigniaud, and Paolo Penna. Equilibria of games in networks for local tasks. In Proc. 22nd International Conference on Principles of Distributed Systems (OPODIS 2018), volume 125 of LIPIcs, pages 6:1-6:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.OPODIS.2018.6.
  20. Constantinos Daskalakis and Christos H Papadimitriou. Computing pure nash equilibria in graphical games via markov random fields. In Proceedings of the 7th ACM Conference on Electronic Commerce, pages 91-99, 2006. URL: https://doi.org/10.1145/1134707.1134718.
  21. Constantinos Daskalakis and Christos H. Papadimitriou. On a network generalization of the minmax theorem. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Programming, pages 423-434, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-642-02930-1_35.
  22. Edith Elkind, Leslie Ann Goldberg, and Paul Goldberg. Nash equilibria in graphical games on trees revisited. In Proc. 7th ACM Conference on Electronic Commerce, pages 100-109. Association for Computing Machinery, 2006. URL: https://doi.org/10.1145/1134707.1134719.
  23. Patrik Floréen, Petteri Kaski, Valentin Polishchuk, and Jukka Suomela. Almost stable matchings by truncating the gale-shapley algorithm. Algorithmica, 58(1):102-118, 2010. URL: https://doi.org/10.1007/S00453-009-9353-9.
  24. David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. The American Mathematical Monthly, 69(1):9-15, 1962. URL: https://doi.org/10.2307/2312726.
  25. Mohsen Ghaffari and Hsin-Hao Su. Distributed Degree Splitting, Edge Coloring, and Orientations. In Proc. 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pages 2505-2523. Society for Industrial and Applied Mathematics, 2017. URL: https://doi.org/10.1137/1.9781611974782.166.
  26. Samuel Ieong, Robert McGrew, Eugene Nudelman, Yoav Shoham, and Qixiang Sun. Fast and compact: A simple class of congestion games. In Proc. 20th National Conference on Artificial Intelligence - Volume 2 (AAAI 2005), pages 489-494. AAAI Press, 2005. URL: http://www.aaai.org/Library/AAAI/2005/aaai05-077.php.
  27. Matthew O Jackson and Leeat Yariv. Diffusion of behavior and equilibrium properties in network games. American Economic Review, 97(2):92-98, 2007. URL: https://doi.org/10.1257/aer.97.2.92.
  28. Matthew O Jackson and Yves Zenou. Games on networks. In Handbook of game theory with economic applications, volume 4, pages 95-163. Elsevier, 2015. URL: https://doi.org/10.1016/B978-0-444-53766-9.00003-3.
  29. Michael Kearns. Graphical games. Algorithmic game theory, 3:159-180, 2007. URL: https://doi.org/10.1017/CBO9780511800481.009.
  30. Michael Kearns, Siddharth Suri, and Nick Montfort. An experimental study of the coloring problem on human subject networks. Science, 313(5788):824-827, 2006. URL: https://doi.org/10.1126/science.1127207.
  31. Michael J. Kearns, Michael L. Littman, and Satinder P. Singh. Graphical models for game theory. In Proc. 17th Conference in Uncertainty in Artificial Intelligence (UAI 2001), pages 253-260, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=107&proceeding_id=17.
  32. Zohar Komarovsky, Vadim Levit, Tal Grinshpoun, and Amnon Meisels. Efficient equilibria in a public goods game. In Proceedings of the 2015 IEEE / WIC / ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) - Volume 01, WI-IAT '15, pages 214-219. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/WI-IAT.2015.91.
  33. Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equilibria. In Proc. 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS 1999), volume 1563 of Lecture Notes in Computer Science, pages 404-413. Springer, 1999. URL: https://doi.org/10.1007/3-540-49116-3_38.
  34. E. Lieberman, C. Hauert, and M. A. Nowak. Evolutionary dynamics on graphs. Nature, 433:312-316, 2005. URL: https://doi.org/10.1038/nature03204.
  35. Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing, 21(1):193-201, 1992. URL: https://doi.org/10.1137/0221015.
  36. Moni Naor and Larry Stockmeyer. What Can be Computed Locally? SIAM Journal on Computing, 24(6):1259-1277, 1995. URL: https://doi.org/10.1137/S0097539793254571.
  37. Luis E Ortiz and Michael Kearns. Nash propagation for loopy graphical games. Advances in neural information processing systems, pages 817-824, 2003. URL: https://doi.org/10.5555/2968618.2968720.
  38. Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse networks. Distributed Computing, 14(2):97-100, 2001. URL: https://doi.org/10.1007/PL00008932.
  39. David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, 2000. URL: https://doi.org/10.1137/1.9780898719772.
  40. Tim Roughgarden. Routing games. Algorithmic game theory, 18:459-484, 2007. Google Scholar
  41. Grant R Schoenebeck and Salil Vadhan. The computational complexity of nash equilibria in concisely represented games. ACM Transactions on Computation Theory (TOCT), 4(2):1-50, 2012. URL: https://doi.org/10.1145/2189778.2189779.
  42. Richard Southwell, Yanjiao Chen, Jianwei Huang, and Qian Zhang. Convergence dynamics of graphical congestion games. In Vikram Krishnamurthy, Qing Zhao, Minyi Huang, and Yonggang Wen, editors, Game Theory for Networks, pages 31-46. Springer Berlin Heidelberg, 2012. URL: https://doi.org/10.1007/978-3-642-35582-0_3.
  43. Alexander J Stewart, Mohsen Mosleh, Marina Diakonova, Antonio A Arechar, David G Rand, and Joshua B Plotkin. Information gerrymandering and undemocratic decisions. Nature, 573(7772):117-121, 2019. URL: https://doi.org/10.1038/S41586-019-1507-6.
  44. David Vickrey and Daphne Koller. Multi-agent algorithms for solving graphical games. AAAI/IAAI, 2:345-351, 2002. URL: http://www.aaai.org/Library/AAAI/2002/aaai02-053.php.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail