Dynamic Graphs Generators Analysis: An Illustrative Case Study

Authors Vincent Bridonneau, Frédéric Guinand , Yoann Pigné

Thumbnail PDF


  • Filesize: 0.85 MB
  • 19 pages

Document Identifiers

Author Details

Vincent Bridonneau
  • Université Le Havre Normandie, Normandie Univ, LITIS EA 4108, 76600 Le Havre, France
Frédéric Guinand
  • Université Le Havre Normandie, Normandie Univ, LITIS EA 4108, 76600 Le Havre, France
Yoann Pigné
  • Université Le Havre Normandie, Normandie Univ, LITIS EA 4108, 76600 Le Havre, France

Cite AsGet BibTex

Vincent Bridonneau, Frédéric Guinand, and Yoann Pigné. Dynamic Graphs Generators Analysis: An Illustrative Case Study. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 257, pp. 8:1-8:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


In this work, we investigate the analysis of generators for dynamic graphs, which are defined as graphs whose topology changes over time. We focus on generated graphs whose orders are neither growing nor constant along time. We introduce a novel concept, called "sustainability," to qualify the long-term evolution of dynamic graphs. A dynamic graph is considered sustainable if its evolution does not result in a static, empty, or periodic graph. To measure the dynamics of the sets of vertices and edges, we propose a metric, named "Nervousness," which is derived from the Jaccard distance. As an illustration of how the analysis can be conducted, we design a parametrized generator, named D3G3 (Degree-Driven Dynamic Geometric Graphs Generator), that generates dynamic graph instances from an initial geometric graph. The evolution of these instances is driven by two rules that operate on the vertices based on their degree. By varying the parameters of the generator, different properties of the dynamic graphs can be produced. Our results show that in order to ascertain the sustainability of the generated dynamic graphs, it is necessary to study both the evolution of the order and the Nervousness for a given set of parameters.

Subject Classification

ACM Subject Classification
  • Theory of computation → Dynamic graph algorithms
  • Mathematics of computing → Random graphs
  • Networks → Topology analysis and generation
  • Dynamic Graphs
  • Graph Generation
  • Graph Properties
  • Evolutionary models


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286(5439):509-512, October 1999. URL: https://doi.org/10.1126/science.286.5439.509.
  2. S Boccaletti, V Latora, Y Moreno, M Chavez, and D Hwang. Complex networks: Structure and dynamics. Physics Reports, 424(4-5):175-308, 2006. Google Scholar
  3. Marián Boguñá, Dmitri Krioukov, and K. C. Claffy. Navigability of complex networks. Nature Physics, 5(1):74-80, January 2009. Number: 1 Publisher: Nature Publishing Group. URL: https://doi.org/10.1038/nphys1130.
  4. Béla Bollobás. A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs. European Journal of Combinatorics, 1(4):311-316, December 1980. URL: https://doi.org/10.1016/S0195-6698(80)80030-8.
  5. Vincent Bridonneau, Frédéric Guinand, and Yoann Pigné. Dynamic Graphs Generators Analysis : an Illustrative Case Study. Technical report, LITIS, Le Havre Normandie University, December 2022. URL: https://hal.science/hal-03910386.
  6. Andrea E. F. Clementi, Claudio Macci, Angelo Monti, Francesco Pasquale, and Riccardo Silvestri. Flooding Time of Edge-Markovian Evolving Graphs. SIAM Journal on Discrete Mathematics, 24(4):1694-1712, January 2010. URL: https://doi.org/10.1137/090756053.
  7. Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17-60, 1960. Google Scholar
  8. Afonso Ferreira and Laurent Viennot. A Note on Models, Algorithms, and Data Structures for Dynamic Communication Networks. report, INRIA, 2002. URL: https://hal.inria.fr/inria-00072185.
  9. Guillermo García-Pérez, M. Ángeles Serrano, and Marián Boguñá. Soft communities in similarity space. Journal of Statistical Physics, 173(3):775-782, 2018. URL: https://doi.org/10.1007/s10955-018-2084-z.
  10. K.-I. Goh and A.-L. Barabási. Burstiness and memory in complex systems. EPL (Europhysics Letters), 81(4):48002, January 2008. URL: https://doi.org/10.1209/0295-5075/81/48002.
  11. Paul Jaccard. The distribution of the flora in the alpine zone.1. New Phytologist, 11(2):37-50, 1912. URL: https://doi.org/10.1111/j.1469-8137.1912.tb05611.x.
  12. David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64(4):820-842, 2002. URL: https://doi.org/10.1006/jcss.2002.1829.
  13. Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá. Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, September 2010. Publisher: American Physical Society. URL: https://doi.org/10.1103/PhysRevE.82.036106.
  14. Per Lundberg, Esa Ranta, Jörgen Ripa, and Veijo Kaitala. Population variability in space and time. Trends in Ecology & Evolution, 15(11):460-464, November 2000. URL: https://doi.org/10.1016/s0169-5347(00)01981-9.
  15. Stanley Milgram. The small world problem. Psychology today, 2(1):60-67, 1967. Google Scholar
  16. Alessandro Muscoloni and Carlo Vittorio Cannistraci. A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate realistic complex networks with communities. New Journal of Physics, 20(5):052002, May 2018. URL: https://doi.org/10.1088/1367-2630/aac06f.
  17. Fragkiskos Papadopoulos, Maksim Kitsak, M. Ángeles Serrano, Marián Boguñá, and Dmitri Krioukov. Popularity versus similarity in growing networks. Nature, 489(7417):537-540, September 2012. URL: https://doi.org/10.1038/nature11459.
  18. Nicola Santoro, Walter Quattrociocchi, Paola Flocchini, Arnaud Casteigts, and Frederic Amblard. Time-Varying Graphs and Social Network Analysis: Temporal Indicators and Metrics, February 2011. arXiv:1102.0629 [physics]. URL: https://doi.org/10.48550/arXiv.1102.0629.
  19. M. Ángeles Serrano, Dmitri Krioukov, and Marián Boguñá. Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett., 100:078701, February 2008. URL: https://doi.org/10.1103/PhysRevLett.100.078701.
  20. Jeffrey Travers and Stanley Milgram. An experimental study of the small world problem. In Social networks, pages 179-197. Elsevier, 1977. Google Scholar
  21. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of "small-world" networks. Nature, 393(6684):440-442, June 1998. URL: https://doi.org/10.1038/30918.
  22. Konstantin Zuev, Marián Boguñá, Ginestra Bianconi, and Dmitri Krioukov. Emergence of Soft Communities from Geometric Preferential Attachment. Scientific Reports, 5(1):9421, August 2015. URL: https://doi.org/10.1038/srep09421.