Document

# Riemannian Simplices and Triangulations

## File

LIPIcs.SOCG.2015.255.pdf
• Filesize: 497 kB
• 15 pages

## Cite As

Ramsay Dyer, Gert Vegter, and Mathijs Wintraecken. Riemannian Simplices and Triangulations. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 255-269, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/LIPIcs.SOCG.2015.255

## Abstract

We study a natural intrinsic definition of geometric simplices in Riemannian manifolds of arbitrary finite dimension, and exploit these simplices to obtain criteria for triangulating compact Riemannian manifolds. These geometric simplices are defined using Karcher means. Given a finite set of vertices in a convex set on the manifold, the point that minimises the weighted sum of squared distances to the vertices is the Karcher mean relative to the weights. Using barycentric coordinates as the weights, we obtain a smooth map from the standard Euclidean simplex to the manifold. A Riemannian simplex is defined as the image of the standard simplex under this barycentric coordinate map. In this work we articulate criteria that guarantee that the barycentric coordinate map is a smooth embedding. If it is not, we say the Riemannian simplex is degenerate. Quality measures for the "thickness" or "fatness" of Euclidean simplices can be adapted to apply to these Riemannian simplices. For manifolds of dimension 2, the simplex is non-degenerate if it has a positive quality measure, as in the Euclidean case. However, when the dimension is greater than two, non-degeneracy can be guaranteed only when the quality exceeds a positive bound that depends on the size of the simplex and local bounds on the absolute values of the sectional curvatures of the manifold. An analysis of the geometry of non-degenerate Riemannian simplices leads to conditions which guarantee that a simplicial complex is homeomorphic to the manifold.
##### Keywords
• Karcher means
• barycentric coordinates
• triangulation
• Riemannian manifold
• Riemannian simplices

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. M. Berger. A Panoramic View of Riemannian Geometry. Springer-Verlag, 2003.
2. J.-D. Boissonnat, R. Dyer, and A. Ghosh. Delaunay triangulation of manifolds. Research Report RR-8389, INRIA, 2013. (also: arXiv:1311.0117).
3. J.-D. Boissonnat, R. Dyer, and A. Ghosh. The stability of Delaunay triangulations. IJCGA, 23(04n05):303-333, 2013. (Preprint: arXiv:1304.2947).
4. J.-D. Boissonnat and A. Ghosh. Manifold reconstruction using tangential Delaunay complexes. Discrete and Computational Geometry, 51(1):221-267, 2014.
5. P. Buser and H. Karcher. Gromov’s almost flat manifolds, volume 81 of Astérique. Société mathématique de France, 1981.
6. S. S. Cairns. On the triangulation of regular loci. Annals of Mathematics. Second Series, 35(3):579-587, 1934.
7. S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S. H Teng. Sliver exudation. Journal of the ACM, 47(5):883-904, 2000.
8. S.-W. Cheng, T. K. Dey, and E. A. Ramos. Manifold reconstruction from point samples. In SODA, pages 1018-1027, 2005.
9. R. Dyer, G. Vegter, and M. Wintraecken. Riemannian simplices and triangulations. Geometriae Dedicata, 2015. To appear. (Preprint: arXiv:1406.3740).
10. H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics, 30:509-541, 1977.
11. F. Labelle and J. R. Shewchuk. Isosurface stuffing: Fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph., 26(3), 2007.
12. J. R. Munkres. Elementary differential topology. Princton University press, second edition, 1968.
13. R.M. Rustamov. Barycentric coordinates on surfaces. Eurographics Symposium of Geometry Processing, 29(5), 2010.
14. O. Sander. Geodesic finite elements on simplicial grids. International Journal for Numerical Methods in Engineering, 92(12):999-1025, 2012.
15. W. P. Thurston. Three-Dimensional Geometry and Topology. Princeton University Press, 1997.
16. S. W. von Deylen. Numerische Approximation in Riemannschen Mannigfaltigkeiten mithilfe des Karcher’schen Schwerpunktes. PhD thesis, Freie Universität Berlin, 2014 (to appear).
17. J. H. C. Whitehead. On C¹-complexes. Annals of Mathematics, 41(4), 1940.
18. H. Whitney. Geometric Integration Theory. Princeton University Press, 1957.
X

Feedback for Dagstuhl Publishing