Document Open Access Logo

A Geometric Approach for the Upper Bound Theorem for Minkowski Sums of Convex Polytopes

Authors Menelaos I. Karavelas, Eleni Tzanaki

Thumbnail PDF


  • Filesize: 0.63 MB
  • 15 pages

Document Identifiers

Author Details

Menelaos I. Karavelas
Eleni Tzanaki

Cite AsGet BibTex

Menelaos I. Karavelas and Eleni Tzanaki. A Geometric Approach for the Upper Bound Theorem for Minkowski Sums of Convex Polytopes. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 81-95, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


We derive tight expressions for the maximum number of k-faces, k=0,...,d-1, of the Minkowski sum, P_1+...+P_r, of r convex d-polytopes P_1,...,P_r in R^d, where d >= 2 and r < d, as a (recursively defined) function on the number of vertices of the polytopes. Our results coincide with those recently proved by Adiprasito and Sanyal [1]. In contrast to Adiprasito and Sanyal's approach, which uses tools from Combinatorial Commutative Algebra, our approach is purely geometric and uses basic notions such as f- and h-vector calculus, stellar subdivisions and shellings, and generalizes the methodology used in [10] and [9] for proving upper bounds on the f-vector of the Minkowski sum of two and three convex polytopes, respectively. The key idea behind our approach is to express the Minkowski sum P_1+...+P_r as a section of the Cayley polytope C of the summands; bounding the k-faces of P_1+...+P_r reduces to bounding the subset of the (k+r-1)-faces of C that contain vertices from each of the r polytopes. We end our paper with a sketch of an explicit construction that establishes the tightness of the upper bounds.
  • Convex polytopes
  • Minkowski sum
  • upper bound


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Karim A. Adiprasito and Raman Sanyal. Relative Stanley-Reisner theory and Upper Bound Theorems for Minkowski sums, 2014. URL:
  2. G. Ewald and G. C. Shephard. Stellar Subdivisions of Boundary Complexes of Convex Polytopes. Mathematische Annalen, 210:7-16, 1974. Google Scholar
  3. Günter Ewald. Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1996. Google Scholar
  4. Efi Fogel, Dan Halperin, and Christophe Weibel. On the Exact Maximum Complexity of Minkowski Sums of Polytopes. Discrete Comput. Geom., 42:654-669, 2009. Google Scholar
  5. Komei Fukuda and Christophe Weibel. f-vectors of Minkowski Additions of Convex Polytopes. Discrete Comput. Geom., 37(4):503-516, 2007. Google Scholar
  6. R. L. Graham, M. Grotschel, and L. Lovasz. Handbook of Combinatorics, volume 2. MIT Press, North Holland, 1995. Google Scholar
  7. Peter Gritzmann and Bernd Sturmfels. Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner bases. SIAM J. Disc. Math., 6(2):246-269, 1993. Google Scholar
  8. Birkett Huber, Jörg Rambau, and Francisco Santos. The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilings. J. Eur. Math. Soc., 2(2):179-198, 2000. Google Scholar
  9. Menelaos I. Karavelas, Christos Konaxis, and Eleni Tzanaki. The maximum number of faces of the Minkowski sum of three convex polytopes. J. Comput. Geom., 6(1):21-74, 2015. Google Scholar
  10. Menelaos I. Karavelas and Eleni Tzanaki. The maximum number of faces of the Minkowski sum of two convex polytopes. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA'12), pages 11-28, 2012. Google Scholar
  11. Menelaos I. Karavelas and Eleni Tzanaki. A geometric approach for the upper bound theorem for Minkowski sums of convex polytopes, 2015. URL:
  12. Jiří Matoušek. Lectures on Discrete Geometry. Graduate Texts in Mathematics. Springer-Verlag New York, Inc., New York, 2002. Google Scholar
  13. B. Matschke, J. Pfeifle, and V. Pilaud. Prodsimplicial-neighborly polytopes. Discrete Comput. Geom., 46(1):100-131, 2011. Google Scholar
  14. P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17:179-184, 1970. Google Scholar
  15. Raman Sanyal. Topological obstructions for vertex numbers of Minkowski sums. J. Comb. Theory, Ser. A, 116(1):168-179, 2009. Google Scholar
  16. Christophe Weibel. Maximal f-vectors of Minkowski Sums of Large Numbers of Polytopes. Discrete Comput. Geom., 47(3):519-537, 2012. Google Scholar
  17. Günter M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail