We provide the first non-trivial result on dynamic breadth-first search (BFS) in external-memory: For general sparse undirected graphs of initially $n$ nodes and $O(n)$ edges and monotone update sequences of either $Theta(n)$ edge insertions or $Theta(n)$ edge deletions, we prove an amortized high-probability bound of $O(n/B^{2/3}+sort(n)cdot log B)$ I/Os per update. In contrast, the currently best approach for static BFS on sparse undirected graphs requires $Omega(n/B^{1/2}+sort(n))$ I/Os.
@InProceedings{meyer:LIPIcs.STACS.2008.1316, author = {Meyer, Ulrich}, title = {{On Dynamic Breadth-First Search in External-Memory}}, booktitle = {25th International Symposium on Theoretical Aspects of Computer Science}, pages = {551--560}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-06-4}, ISSN = {1868-8969}, year = {2008}, volume = {1}, editor = {Albers, Susanne and Weil, Pascal}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2008.1316}, URN = {urn:nbn:de:0030-drops-13167}, doi = {10.4230/LIPIcs.STACS.2008.1316}, annote = {Keywords: External Memory, Dynamic Graph Algorithms, BFS, Randomization} }
Feedback for Dagstuhl Publishing