LIPIcs.STACS.2008.1362.pdf
- Filesize: 188 kB
- 12 pages
The classical Frobenius problem over ${mathbb N}$ is to compute the largest integer $g$ not representable as a non-negative integer linear combination of non-negative integers $x_1, x_2, ldots, x_k$, where $gcd(x_1, x_2, ldots, x_k) = 1$. In this paper we consider novel generalizations of the Frobenius problem to the noncommutative setting of a free monoid. Unlike the commutative case, where the bound on $g$ is quadratic, we are able to show exponential or subexponential behavior for several analogues of $g$, with the precise bound depending on the particular measure chosen.
Feedback for Dagstuhl Publishing