Quantum Query Complexity of Multilinear Identity Testing

Authors Vikraman Arvind, Partha Mukhopadhyay

Thumbnail PDF


  • Filesize: 151 kB
  • 12 pages

Document Identifiers

Author Details

Vikraman Arvind
Partha Mukhopadhyay

Cite AsGet BibTex

Vikraman Arvind and Partha Mukhopadhyay. Quantum Query Complexity of Multilinear Identity Testing. In 26th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 3, pp. 87-98, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Motivated by the quantum algorithm for testing commutativity of black-box groups (Magniez and Nayak, 2007), we study the following problem: Given a black-box finite ring by an additive generating set and a multilinear polynomial over that ring, also accessed as a black-box function (we allow the indeterminates of the polynomial to be commuting or noncommuting), we study the problem of testing if the polynomial is an \emph{identity} for the given ring. We give a quantum algorithm with query complexity sub-linear in the number of generators for the ring, when the number of indeterminates of the input polynomial is small (ideally a constant). Towards a lower bound, we also show a reduction from a version of the collision problem (which is well studied in quantum computation) to a variant of this problem.
  • Quantum algorithm
  • Identity testing
  • Query complexity
  • Multilinear polynomials


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail