Efficient and Error-Correcting Data Structures for Membership and Polynomial Evaluation

Authors Victor Chen, Elena Grigorescu, Ronald de Wolf



PDF
Thumbnail PDF

File

LIPIcs.STACS.2010.2455.pdf
  • Filesize: 130 kB
  • 12 pages

Document Identifiers

Author Details

Victor Chen
Elena Grigorescu
Ronald de Wolf

Cite AsGet BibTex

Victor Chen, Elena Grigorescu, and Ronald de Wolf. Efficient and Error-Correcting Data Structures for Membership and Polynomial Evaluation. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 203-214, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)
https://doi.org/10.4230/LIPIcs.STACS.2010.2455

Abstract

We construct efficient data structures that are resilient against a constant fraction of adversarial noise. Our model requires that the decoder answers \emph{most} queries correctly with high probability and for the remaining queries, the decoder with high probability either answers correctly or declares ``don't know.'' Furthermore, if there is no noise on the data structure, it answers \emph{all} queries correctly with high probability. Our model is the common generalization of an error-correcting data structure model proposed recently by de~Wolf, and the notion of ``relaxed locally decodable codes'' developed in the PCP literature. We measure the efficiency of a data structure in terms of its \emph{length} (the number of bits in its representation), and query-answering time, measured by the number of \emph{bit-probes} to the (possibly corrupted) representation. We obtain results for the following two data structure problems: \begin{itemize} \item (Membership) Store a subset $S$ of size at most $s$ from a universe of size $n$ such that membership queries can be answered efficiently, i.e., decide if a given element from the universe is in $S$. \\ We construct an error-correcting data structure for this problem with length nearly linear in $s\log n$ that answers membership queries with $O(1)$ bit-probes. This nearly matches the asymptotically optimal parameters for the noiseless case: length $O(s\log n)$ and one bit-probe, due to Buhrman, Miltersen, Radhakrishnan, and Venkatesh. \item (Univariate polynomial evaluation) Store a univariate polynomial $g$ of degree $\deg(g)\leq s$ over the integers modulo $n$ such that evaluation queries can be answered efficiently, i.e., we can evaluate the output of $g$ on a given integer modulo $n$. \\ We construct an error-correcting data structure for this problem with length nearly linear in $s\log n$ that answers evaluation queries with $\polylog s\cdot\log^{1+o(1)}n$ bit-probes. This nearly matches the parameters of the best-known noiseless construction, due to Kedlaya and Umans. \end{itemize}
Keywords
  • Data Structures
  • Error-Correcting Codes
  • Membership
  • Polynomial Evaluation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail