Decidability of the Interval Temporal Logic ABB over the Natural Numbers

Authors Angelo Montanari, Gabriele Puppis, Pietro Sala, Guido Sciavicco

Thumbnail PDF


  • Filesize: 320 kB
  • 12 pages

Document Identifiers

Author Details

Angelo Montanari
Gabriele Puppis
Pietro Sala
Guido Sciavicco

Cite AsGet BibTex

Angelo Montanari, Gabriele Puppis, Pietro Sala, and Guido Sciavicco. Decidability of the Interval Temporal Logic ABB over the Natural Numbers. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 597-608, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


In this paper, we focus our attention on the interval temporal logic of the Allen's relations ``meets'', ``begins'', and ``begun by'' ($\ABB$ for short), interpreted over natural numbers. We first introduce the logic and we show that it is expressive enough to model distinctive interval properties, such as accomplishment conditions, to capture basic modalities of point-based temporal logic, such as the until operator, and to encode relevant metric constraints. Then, we prove that the satisfiability problem for $\ABB$ over natural numbers is decidable by providing a small model theorem based on an original contraction method. Finally, we prove the EXPSPACE-completeness of the problem.
  • Interval temporal logics
  • compass structures
  • decidability
  • complexity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail