Probably Optimal Graph Motifs

Authors Andreas Björklund, Petteri Kaski, Lukasz Kowalik

Thumbnail PDF


  • Filesize: 0.63 MB
  • 12 pages

Document Identifiers

Author Details

Andreas Björklund
Petteri Kaski
Lukasz Kowalik

Cite AsGet BibTex

Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Probably Optimal Graph Motifs. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 20-31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


We show an O^*(2^k)-time polynomial space algorithm for the k-sized Graph Motif problem. We also introduce a new optimization variant of the problem, called Closest Graph Motif and solve it within the same time bound. The Closest Graph Motif problem encompasses several previously studied optimization variants, like Maximum Graph Motif, Min-Substitute, and Min-Add. Moreover, we provide a piece of evidence that our result might be essentially tight: the existence of an O^*((2-epsilon)^k)-time algorithm for the Graph Motif problem implies an ((2-epsilon')^n)-time algorithm for Set Cover.
  • graph motif
  • FPT algorithm


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail