Palindrome Recognition In The Streaming Model

Authors Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, Erfan Sadeqi Azer

Thumbnail PDF


  • Filesize: 0.78 MB
  • 13 pages

Document Identifiers

Author Details

Petra Berenbrink
Funda Ergün
Frederik Mallmann-Trenn
Erfan Sadeqi Azer

Cite AsGet BibTex

Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and Erfan Sadeqi Azer. Palindrome Recognition In The Streaming Model. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 149-161, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


A palindrome is defined as a string which reads forwards the same as backwards, like, for example, the string "racecar". In the Palindrome Problem, one tries to find all palindromes in a given string. In contrast, in the case of the Longest Palindromic Substring Problem, the goal is to find an arbitrary one of the longest palindromes in the string. In this paper we present three algorithms in the streaming model for the the above problems, where at any point in time we are only allowed to use sublinear space. We first present a one-pass randomized algorithm that solves the Palindrome Problem. It has an additive error and uses square root of n space. We also give two variants of the algorithm which solve related and practical problems. The second algorithm determines the exact locations of all longest palindromes using two passes and square root of n space. The third algorithm is a one-pass randomized algorithm, which solves the Longest Palindromic Substring Problem. It has a multiplicative error using only O(log(n)) space.
  • Palindromes
  • Streaming Model
  • Complementary Palindrome


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail