Faster Sparse Suffix Sorting

Authors Tomohiro I, Juha Kärkkäinen, Dominik Kempa



PDF
Thumbnail PDF

File

LIPIcs.STACS.2014.386.pdf
  • Filesize: 0.6 MB
  • 11 pages

Document Identifiers

Author Details

Tomohiro I
Juha Kärkkäinen
Dominik Kempa

Cite AsGet BibTex

Tomohiro I, Juha Kärkkäinen, and Dominik Kempa. Faster Sparse Suffix Sorting. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 386-396, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)
https://doi.org/10.4230/LIPIcs.STACS.2014.386

Abstract

The sparse suffix sorting problem is to sort b=o(n) arbitrary suffixes of a string of length n using o(n) words of space in addition to the string. We present an O(n) time Monte Carlo algorithm using O(b.log(b)) space and an O(n.log(b)) time Las Vegas algorithm using O(b) space. This is a significant improvement over the best prior solutions of [Bille et al., ICALP 2013]: a Monte Carlo algorithm running in O(n.log(b)) time and O(b^(1+e)) space or O(n.log^2(b)) time and O(b) space, and a Las Vegas algorithm running in O(n.log^2(b)+b^2.log(b)) time and O(b) space. All the above results are obtained with high probability not just in expectation.
Keywords
  • string algorithms
  • sparse suffix sorting
  • sparse suffix trees
  • Karp-Rabin fingerprints
  • space-time tradeoffs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail