Generalized Reordering Buffer Management

Authors Yossi Azar, Matthias Englert, Iftah Gamzu, Eytan Kidron

Thumbnail PDF


  • Filesize: 0.53 MB
  • 12 pages

Document Identifiers

Author Details

Yossi Azar
Matthias Englert
Iftah Gamzu
Eytan Kidron

Cite AsGet BibTex

Yossi Azar, Matthias Englert, Iftah Gamzu, and Eytan Kidron. Generalized Reordering Buffer Management. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 87-98, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


An instance of the generalized reordering buffer management problem consists of a service station that has k servers, each configured with a color, and a buffer of size b. The station needs to serve an online stream of colored items. Whenever an item arrives, it is stored in the buffer. At any point in time, a currently pending item can be served by switching a server to its color. The objective is to serve all items in a way that minimizes the number of servers color switches. This problem generalizes two well-studied online problems: the paging problem, which is the special case when b=1, and the reordering buffer problem, which is the special case when k=1. In this paper, we develop a randomized online algorithm that obtains a competitive ratio of O(sqrt(b).ln(k)). Note that this result beats the easy deterministic lower bound of k whenever b < k^(2-e). We complement our randomized approach by presenting a deterministic algorithm that attains a competitive ratio of O(min{k^2.ln(b),k.b}). We further demonstrate that if our deterministic algorithm can employ k/(1-d) servers where d is in (0,1), then it achieves a competitive ratio of O(min{ln(b/d^2),b/d}) against an optimal offline adversary that employs k servers.
  • online algorithms
  • paging
  • reordering buffer


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail