Let G = (V,E) be an undirected unweighted graph on n vertices. A subgraph H of G is called an (all-pairs) purely additive spanner with stretch \beta if for every (u,v) \in V \times V, \mathsf{dist}_H(u,v) \le \mathsf{dist}_G(u,v) + \beta. The problem of computing sparse spanners with small stretch \beta is well-studied. Here we consider the following relaxation: we are given \p\subseteq V \times V and we seek a sparse subgraph H where \mathsf{dist}_H(u,v)\le \mathsf{dist}_G(u,v) + \beta for each (u,v) \in \p. Such a subgraph is called a pairwise spanner with additive stretch \beta and our goal is to construct such subgraphs that are sparser than all-pairs spanners with the same stretch. We show sparse pairwise spanners with additive stretch 4 and with additive stretch 6. We also consider the following special cases: \p = S \times V and \p = S \times T, where S\subseteq V and T\subseteq V, and show sparser pairwise spanners for these cases.
@InProceedings{kavitha:LIPIcs.STACS.2015.513, author = {Kavitha, Telikepalli}, title = {{New Pairwise Spanners}}, booktitle = {32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)}, pages = {513--526}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-78-1}, ISSN = {1868-8969}, year = {2015}, volume = {30}, editor = {Mayr, Ernst W. and Ollinger, Nicolas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.513}, URN = {urn:nbn:de:0030-drops-49381}, doi = {10.4230/LIPIcs.STACS.2015.513}, annote = {Keywords: undirected graphs, spanners, approximate distances, additive stretch} }
Feedback for Dagstuhl Publishing