We study approximation of Boolean functions by low-degree polynomials over the ring Z/2^kZ. More precisely, given a Boolean function F:{0,1}^n -> {0,1}, define its k-lift to be F_k:{0,1}^n -> {0,2^(k-1)} by F_k(x) = 2^(k-F(x)) (mod 2^k). We consider the fractional agreement (which we refer to as \gamma_{d,k}(F)) of F_k with degree d polynomials from Z/2^kZ[x_1,..,x_n]. Our results are the following: * Increasing k can help: We observe that as k increases, gamma_{d,k}(F) cannot decrease. We give two kinds of examples where gamma_{d,k}(F) actually increases. The first is an infinite family of functions F such that gamma_{2d,2}(F) - gamma_{3d-1,1}(F) >= Omega(1). The second is an infinite family of functions F such that gamma_{d,1}(F) <= 1/2+o(1) - as small as possible - but gamma_{d,3}(F) >= 1/2 + Omega(1). * Increasing k doesn't always help: Adapting a proof of Green [Comput. Complexity, 9(1):16--38, 2000], we show that irrespective of the value of k, the Majority function Maj_n satisfies gamma_{d,k}(Maj_n) <= 1/2+ O(d)/sqrt{n}. In other words, polynomials over Z/2^kZ for large k do not approximate the majority function any better than polynomials over Z/2Z. We observe that the model we study subsumes the model of non-classical polynomials, in the sense that proving bounds in our model implies bounds on the agreement of non-classical polynomials with Boolean functions. In particular, our results answer questions raised by Bhowmick and Lovett [In Proc. 30th Computational Complexity Conf., pages 72-87, 2015] that ask whether non-classical polynomials approximate Boolean functions better than classical polynomials of the same degree.
@InProceedings{bhrushundi_et_al:LIPIcs.STACS.2017.12, author = {Bhrushundi, Abhishek and Harsha, Prahladh and Srinivasan, Srikanth}, title = {{On Polynomial Approximations Over Z/2^kZ*}}, booktitle = {34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)}, pages = {12:1--12:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-028-6}, ISSN = {1868-8969}, year = {2017}, volume = {66}, editor = {Vollmer, Heribert and Vall\'{e}e, Brigitte}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.12}, URN = {urn:nbn:de:0030-drops-70212}, doi = {10.4230/LIPIcs.STACS.2017.12}, annote = {Keywords: Polynomials over rings, Approximation by polynomials, Boolean functions, Non-classical polynomials} }
Feedback for Dagstuhl Publishing