Upper and Lower Bounds for Dynamic Data Structures on Strings

Authors Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, Tatiana Starikovskaya



PDF
Thumbnail PDF

File

LIPIcs.STACS.2018.22.pdf
  • Filesize: 0.52 MB
  • 14 pages

Document Identifiers

Author Details

Raphaël Clifford
Allan Grønlund
Kasper Green Larsen
Tatiana Starikovskaya

Cite AsGet BibTex

Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana Starikovskaya. Upper and Lower Bounds for Dynamic Data Structures on Strings. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 22:1-22:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.STACS.2018.22

Abstract

We consider a range of simply stated dynamic data structure problems on strings. An update changes one symbol in the input and a query asks us to compute some function of the pattern of length m and a substring of a longer text. We give both conditional and unconditional lower bounds for variants of exact matching with wildcards, inner product, and Hamming distance computation via a sequence of reductions. As an example, we show that there does not exist an O(m^{1/2-epsilon}) time algorithm for a large range of these problems unless the online Boolean matrix-vector multiplication conjecture is false. We also provide nearly matching upper bounds for most of the problems we consider.
Keywords
  • exact pattern matching with wildcards
  • hamming distance
  • inner product
  • conditional lower bounds

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 59-78. IEEE Computer Society, 2015. URL: http://dx.doi.org/10.1109/FOCS.2015.14.
  2. Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434-443. IEEE Computer Society, 2014. URL: http://dx.doi.org/10.1109/FOCS.2014.53.
  3. Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment of sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 39-51. Springer, 2014. URL: http://dx.doi.org/10.1007/978-3-662-43948-7_4.
  4. Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039-1051, 1987. URL: http://dx.doi.org/10.1137/0216067.
  5. Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic texts. In SODA '00: Proc. 11superscriptth ACM-SIAM Symp. on Discrete Algorithms, pages 819-828, 2000. Google Scholar
  6. Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In FOCS '98: Proc. 39superscriptth Annual Symp. Foundations of Computer Science, pages 534-543, 1998. Google Scholar
  7. Amihood Amir, Dmitry Keselman, Gad M. Landau, Moshe Lewenstein, Noa Lewenstein, and Michael Rodeh. Text indexing and dictionary matching with one error. J. Algorithms, 37(2):309-325, 2000. URL: http://dx.doi.org/10.1006/jagm.2000.1104.
  8. Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static pattern matching. ACM Trans. Algorithms, 3(2):19, 2007. URL: http://dx.doi.org/10.1145/1240233.1240242.
  9. Amihood Amir, Avivit Levy, Ely Porat, and B. Riva Shalom. Dictionary matching with a few gaps. Theor. Comput. Sci., 589:34-46, 2015. URL: http://dx.doi.org/10.1016/j.tcs.2015.04.011.
  10. Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 51-58. ACM, 2015. URL: http://dx.doi.org/10.1145/2746539.2746612.
  11. Ricardo Baeza-Yates, Gonzalo Navarro, Errki Sutinen, and Jorma Tarhio. Indexing methods for approximate text retrieval. Technical report, Dept. of CS, Univ. of Chile, March 1997. Google Scholar
  12. Leonid Boytsov. Indexing methods for approximate dictionary searching: Comparative analysis. ACM Journal of Experimental Algorithmics, 16(1), 2011. URL: http://dx.doi.org/10.1145/1963190.1963191.
  13. Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH fails. In FOCS '14: Proc. 55superscriptth Annual Symp. Foundations of Computer Science, pages 661-670, 2014. Google Scholar
  14. Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string problems and dynamic time warping. In FOCS '15: Proc. 56superscriptth Annual Symp. Foundations of Computer Science, pages 79-97, 2015. Google Scholar
  15. Peter Clifford and Raphaël Clifford. Simple deterministic wildcard matching. Inf. Process. Lett., 101(2):53-54, 2007. URL: http://dx.doi.org/10.1016/j.ipl.2006.08.002.
  16. Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat. A black box for online approximate pattern matching. Inf. Comput., 209(4):731-736, 2011. URL: http://dx.doi.org/10.1016/j.ic.2010.12.007.
  17. Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing with errors and don't cares. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 91-100. ACM, 2004. URL: http://dx.doi.org/10.1145/1007352.1007374.
  18. Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard matching. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 592-601. ACM, 2002. URL: http://dx.doi.org/10.1145/509907.509992.
  19. Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lącki, and Piotr Sankowski. Optimal dynamic strings. In SODA '18: Proc. of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 2018. Google Scholar
  20. Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 21-30. ACM, 2015. URL: http://dx.doi.org/10.1145/2746539.2746609.
  21. Trinh N. D. Huynh, Wing-Kai Hon, Tak Wah Lam, and Wing-Kin Sung. Approximate string matching using compressed suffix arrays. Theor. Comput. Sci., 352(1-3):240-249, 2006. URL: http://dx.doi.org/10.1016/j.tcs.2005.11.022.
  22. Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. J. ACM, 61(1):4:1-4:23, 2014. URL: http://dx.doi.org/10.1145/2559902.
  23. Howard J. Karloff. Fast algorithms for approximately counting mismatches. Inf. Process. Lett., 48(2):53-60, 1993. URL: http://dx.doi.org/10.1016/0020-0190(93)90177-B.
  24. S. Rao Kosaraju. Efficient string matching. Manuscript, 1987. Google Scholar
  25. Kasper Green Larsen. The cell probe complexity of dynamic range counting. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 85-94. ACM, 2012. URL: http://dx.doi.org/10.1145/2213977.2213987.
  26. Kasper Green Larsen, Omri Weinstein, and Huacheng Yu. Crossing the logarithmic barrier for dynamic boolean data structure lower bounds. arXiv preprint arXiv:1703.03575, 2017. Google Scholar
  27. Kasper Green Larsen and Ryan Williams. Faster online matrix-vector multiplication. In SODA '17: Proc. 28superscriptth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2182-2189, 2017. Google Scholar
  28. Mihai Pǎtraşcu and Erik D. Demaine. Tight bounds for the partial-sums problem. In SODA '04: Proc. 15superscriptth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 20-29, 2004. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail