LIPIcs.STACS.2018.39.pdf
- Filesize: 0.59 MB
- 14 pages
A binary VCSP is a general framework for the minimization problem of a function represented as the sum of unary and binary cost functions.An important line of VCSP research is to investigate what functions can be solved in polynomial time. Cooper-Zivny classified the tractability of binary VCSP instances according to the concept of "triangle," and showed that the only interesting tractable case is the one induced by the joint winner property (JWP). Recently, Iwamasa-Murota-Zivny made a link between VCSP and discrete convex analysis, showing that a function satisfying the JWP can be transformed into a function represented as the sum of two M-convex functions, which can be minimized in polynomial time via an M-convex intersection algorithm if the value oracle of each M-convex function is given. In this paper, we give an algorithmic answer to a natural question: What binary finite-valued CSP instances can be solved in polynomial time via an M-convex intersection algorithm? We solve this problem by devising a polynomial-time algorithm for obtaining a concrete form of the representation in the representable case. Our result presents a larger tractable class of binary finite-valued CSPs, which properly contains the JWP class.
Feedback for Dagstuhl Publishing