The Continuous Polytope Escape Problem (CPEP) asks whether every trajectory of a linear differential equation initialised within a convex polytope eventually escapes the polytope. We provide a polynomial-time algorithm to decide CPEP for compact polytopes. We also establish a quantitative uniform upper bound on the time required for every trajectory to escape the given polytope. In addition, we establish iteration bounds for termination of discrete linear loops via reduction to the continuous case.
@InProceedings{dcosta_et_al:LIPIcs.STACS.2020.49, author = {D'Costa, Julian and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Worrell, James}, title = {{How Fast Can You Escape a Compact Polytope?}}, booktitle = {37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)}, pages = {49:1--49:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-140-5}, ISSN = {1868-8969}, year = {2020}, volume = {154}, editor = {Paul, Christophe and Bl\"{a}ser, Markus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.49}, URN = {urn:nbn:de:0030-drops-119105}, doi = {10.4230/LIPIcs.STACS.2020.49}, annote = {Keywords: Continuous linear dynamical systems, termination} }
Feedback for Dagstuhl Publishing