The Schnorr-Stimm dichotomy theorem [Schnorr and Stimm, 1972] concerns finite-state gamblers that bet on infinite sequences of symbols taken from a finite alphabet Σ. The theorem asserts that, for any such sequence S, the following two things are true. (1) If S is not normal in the sense of Borel (meaning that every two strings of equal length appear with equal asymptotic frequency in S), then there is a finite-state gambler that wins money at an infinitely-often exponential rate betting on S. (2) If S is normal, then any finite-state gambler betting on S loses money at an exponential rate betting on S. In this paper we use the Kullback-Leibler divergence to formulate the lower asymptotic divergence div(S||α) of a probability measure α on Σ from a sequence S over Σ and the upper asymptotic divergence Div(S||α) of α from S in such a way that a sequence S is α-normal (meaning that every string w has asymptotic frequency α(w) in S) if and only if Div(S||α)=0. We also use the Kullback-Leibler divergence to quantify the total risk Risk_G(w) that a finite-state gambler G takes when betting along a prefix w of S. Our main theorem is a strong dichotomy theorem that uses the above notions to quantify the exponential rates of winning and losing on the two sides of the Schnorr-Stimm dichotomy theorem (with the latter routinely extended from normality to α-normality). Modulo asymptotic caveats in the paper, our strong dichotomy theorem says that the following two things hold for prefixes w of S. (1') The infinitely-often exponential rate of winning in 1 is 2^{Div(S||α)|w|}. (2') The exponential rate of loss in 2 is 2^{-Risk_G(w)}. We also use (1') to show that 1-Div(S||α)/c, where c= log(1/ min_{a∈Σ} α(a)), is an upper bound on the finite-state α-dimension of S and prove the dual fact that 1-div(S||α)/c is an upper bound on the finite-state strong α-dimension of S.
@InProceedings{huang_et_al:LIPIcs.STACS.2020.51, author = {Huang, Xiang and Lutz, Jack H. and Mayordomo, Elvira and Stull, Donald M.}, title = {{Asymptotic Divergences and Strong Dichotomy}}, booktitle = {37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)}, pages = {51:1--51:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-140-5}, ISSN = {1868-8969}, year = {2020}, volume = {154}, editor = {Paul, Christophe and Bl\"{a}ser, Markus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.51}, URN = {urn:nbn:de:0030-drops-119125}, doi = {10.4230/LIPIcs.STACS.2020.51}, annote = {Keywords: finite-state dimension, finite-state gambler, Kullback-Leibler divergence, normal sequences} }
Feedback for Dagstuhl Publishing