Document

Star Transposition Gray Codes for Multiset Permutations

File

LIPIcs.STACS.2022.34.pdf
• Filesize: 2.29 MB
• 14 pages

Acknowledgements

We thank Jiří Fink for inspiring brain-storming sessions in the early phases of this research project, and we thank Aaron Williams for interesting discussions about star transposition Gray codes.

Cite As

Petr Gregor, Torsten Mütze, and Arturo Merino. Star Transposition Gray Codes for Multiset Permutations. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 34:1-34:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.STACS.2022.34

Abstract

Given integers k ≥ 2 and a_1,…,a_k ≥ 1, let a: = (a_1,…,a_k) and n: = a_1+⋯+a_k. An a-multiset permutation is a string of length n that contains exactly a_i symbols i for each i = 1,…,k. In this work we consider the problem of exhaustively generating all a-multiset permutations by star transpositions, i.e., in each step, the first entry of the string is transposed with any other entry distinct from the first one. This is a far-ranging generalization of several known results. For example, it is known that permutations (a_1 = ⋯ = a_k = 1) can be generated by star transpositions, while combinations (k = 2) can be generated by these operations if and only if they are balanced (a_1 = a_2), with the positive case following from the middle levels theorem. To understand the problem in general, we introduce a parameter Δ(a): = n-2max{a_1,…,a_k} that allows us to distinguish three different regimes for this problem. We show that if Δ(a) < 0, then a star transposition Gray code for a-multiset permutations does not exist. We also construct such Gray codes for the case Δ(a) > 0, assuming that they exist for the case Δ(a) = 0. For the case Δ(a) = 0 we present some partial positive results. Our proofs establish Hamilton-connectedness or Hamilton-laceability of the underlying flip graphs, and they answer several cases of a recent conjecture of Shen and Williams. In particular, we prove that the middle levels graph is Hamilton-laceable.

Subject Classification

ACM Subject Classification
• Mathematics of computing → Permutations and combinations
• Mathematics of computing → Combinatorial algorithms
• Mathematics of computing → Matchings and factors
Keywords
• Gray code
• permutation
• combination
• transposition
• Hamilton cycle

Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

References

1. B. Alspach and Y. Qin. Hamilton-connected Cayley graphs on Hamiltonian groups. European J. Combin., 22(6):777-787, 2001. URL: https://doi.org/10.1006/eujc.2001.0456.
2. T. Araki. Hyper Hamiltonian laceability of Cayley graphs generated by transpositions. Networks, 48(3):121-124, 2006. URL: https://doi.org/10.1002/net.20126.
3. M. Buck and D. Wiedemann. Gray codes with restricted density. Discrete Math., 48(2-3):163-171, 1984. URL: https://doi.org/10.1016/0012-365X(84)90179-1.
4. B. Cameron, J. Sawada, and A. Williams. A Hamilton cycle in the k-sided pancake network, 2021. URL: http://arxiv.org/abs/2103.09256.
5. P. Chase. Combination generation and graylex ordering. Congr. Numer., 69:215-242, 1989. Eighteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1988).
6. C. C. Chen and N. F. Quimpo. On strongly Hamiltonian abelian group graphs. In Combinatorial mathematics, VIII (Geelong, 1980), volume 884 of Lecture Notes in Math., pages 23-34. Springer, Berlin-New York, 1981.
7. R. C. Compton and S. G. Williamson. Doubly adjacent Gray codes for the symmetric group. Linear and Multilinear Algebra, 35(3-4):237-293, 1993. URL: https://doi.org/10.1080/03081089308818261.
8. P. F. Corbett. Rotator graphs: An efficient topology for point-to-point multiprocessor networks. IEEE Transactions on Parallel and Distributed Systems, 3:622-626, 1992.
9. P. Diaconis and R. Graham. Magical mathematics. Princeton University Press, Princeton, NJ, 2012. The mathematical ideas that animate great magic tricks, With a foreword by Martin Gardner.
10. P. Eades, M. Hickey, and R. C. Read. Some Hamilton paths and a minimal change algorithm. J. Assoc. Comput. Mach., 31(1):19-29, 1984. URL: https://doi.org/10.1145/2422.322413.
11. P. Eades and B. McKay. An algorithm for generating subsets of fixed size with a strong minimal change property. Inform. Process. Lett., 19(3):131-133, 1984. URL: https://doi.org/10.1016/0020-0190(84)90091-7.
12. P. Gregor, A. Merino, and T. Mütze. URL: http://arxiv.org/abs/2108.07465.
13. P. Gregor, T. Mütze, and J. Nummenpalo. A short proof of the middle levels theorem. Discrete Analysis, 2018:8:12 pp., 2018.
14. F. Harary and M. Lewinter. Hypercubes and other recursively defined Hamilton laceable graphs. Congr. Numer., 60:81-84, 1987. Eighteenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, Fla., 1987).
15. I. Havel. Semipaths in directed cubes. In Graphs and other combinatorial topics (Prague, 1982), volume 59 of Teubner-Texte Math., pages 101-108. Teubner, Leipzig, 1983.
16. S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho. Hamiltonian-laceability of star graphs. Networks, 36(4):225-232, 2000. URL: https://doi.org/10.1002/1097-0037(200012)36:4<225::AID-NET3>3.0.CO;2-G.
17. T. Jenkyns and D. McCarthy. Generating all k-subsets of 1⋯ n with minimal changes. Ars Combin., 40:153-159, 1995.
18. S. Johnson. Generation of permutations by adjacent transposition. Math. Comp., 17:282-285, 1963.
19. D. E. Knuth. The Art of Computer Programming. Vol. 4A. Combinatorial Algorithms. Part 1. Addison-Wesley, Upper Saddle River, NJ, 2011.
20. V. L. Kompel'maher and V. A. Liskovec. Sequential generation of permutations by means of a transposition basis. Kibernetika (Kiev), 3:17-21, 1975.
21. L. Lovász. Problem 11. In Combinatorial Structures and Their Applications (Proc. Calgary Internat. Conf., Calgary, Alberta, 1969). Gordon and Breach, New York, 1970.
22. A. I. Merino, O. Mička, and T. Mütze. On a combinatorial generation problem of Knuth. In D. Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 735-743. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.46.
23. T. Mütze. Proof of the middle levels conjecture. Proc. Lond. Math. Soc., 112(4):677-713, 2016. URL: https://doi.org/10.1112/plms/pdw004.
24. T. Mütze and J. Nummenpalo. A constant-time algorithm for middle levels Gray codes. Algorithmica, 82(5):1239-1258, 2020. URL: https://doi.org/10.1007/s00453-019-00640-2.
25. A. Nijenhuis and H. Wilf. Combinatorial algorithms. Academic Press, New York-London, 1975. Computer Science and Applied Mathematics.
26. F. Ruskey. Adjacent interchange generation of combinations. J. Algorithms, 9(2):162-180, 1988. URL: https://doi.org/10.1016/0196-6774(88)90036-3.
27. F. Ruskey. Combinatorial Gray code. In M.-Y. Kao, editor, Encyclopedia of Algorithms, pages 342-347. Springer, 2016.
28. F. Ruskey and C. D. Savage. Hamilton cycles that extend transposition matchings in Cayley graphs of S_n. SIAM J. Discrete Math., 6(1):152-166, 1993. URL: https://doi.org/10.1137/0406012.
29. F. Ruskey and A. Williams. The coolest way to generate combinations. Discrete Math., 309(17):5305-5320, 2009. URL: https://doi.org/10.1016/j.disc.2007.11.048.
30. C. D. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605-629, 1997. URL: https://doi.org/10.1137/S0036144595295272.
31. J. Sawada and A. Williams. Greedy flipping of pancakes and burnt pancakes. Discrete Appl. Math., 210:61-74, 2016. URL: https://doi.org/10.1016/j.dam.2016.02.005.
32. J. Sawada and A. Williams. Solving the sigma-tau problem. ACM Trans. Algorithms, 16(1):Art. 11, 17 pp., 2020. URL: https://doi.org/10.1145/3359589.
33. X. S. Shen and A. Williams. A `hot potato' Gray code for permutations. Electronic Notes in Discrete Mathematics, 44:89-94, 2013. URL: https://doi.org/10.1016/j.endm.2013.10.014.
34. X. S. Shen and A. Williams. A k-ary middle levels conjecture. In Proceedings of the 23rd Thailand-Japan Conference on Discrete and Computational Geometry, Graphs, and Games, 2021.
35. G. J. Simmons. Almost all n-dimensional rectangular lattices are Hamilton-laceable. In Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1978), Congress. Numer., XXI, pages 649-661. Utilitas Math., Winnipeg, Man., 1978.
36. P. J. Slater. Generating all permutations by graphical transpositions. Ars Combin., 5:219-225, 1978.
37. G. Stachowiak. Hamilton paths in graphs of linear extensions for unions of posets. SIAM J. Discrete Math., 5(2):199-206, 1992. URL: https://doi.org/10.1137/0405016.
38. D. Tang and C. Liu. Distance-2 cyclic chaining of constant-weight codes. IEEE Trans. Computers, C-22:176-180, 1973.
39. M. Tchuente. Generation of permutations by graphical exchanges. Ars Combin., 14:115-122, 1982.
40. H. F. Trotter. Algorithm 115: Perm. Commun. ACM, 5(8):434-435, 1962. URL: https://doi.org/10.1145/368637.368660.
41. A. Williams. The greedy Gray code algorithm. In Algorithms and Data Structures - 13th International Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings, pages 525-536, 2013. URL: https://doi.org/10.1007/978-3-642-40104-6_46.
42. P. Winkler. Mathematical puzzles: a connoisseur’s collection. A K Peters, Ltd., Natick, MA, 2004.
43. S. Zaks. A new algorithm for generation of permutations. BIT, 24(2):196-204, 1984. URL: https://doi.org/10.1007/BF01937486.