We consider a matching problem in a bipartite graph G = (A ∪ B, E) where vertices have strict preferences over their neighbors. A matching M is popular if for any matching N, the number of vertices that prefer M is at least the number that prefer N; thus M does not lose a head-to-head election against any matching where vertices are voters. It is easy to find popular matchings; however when there are edge costs, it is NP-hard to find (or even approximate) a min-cost popular matching. This hardness motivates relaxations of popularity. Here we introduce fairly popular matchings. A fairly popular matching may lose elections but there is no good matching (wrt popularity) that defeats a fairly popular matching. In particular, any matching that defeats a fairly popular matching does not occur in the support of any popular mixed matching. We show that a min-cost fairly popular matching can be computed in polynomial time and the fairly popular matching polytope has a compact extended formulation. We also show the following hardness result: given a matching M, it is NP-complete to decide if there exists a popular matching that defeats M. Interestingly, there exists a set K of at most m popular matchings in G (where |E| = m) such that if a matching is defeated by some popular matching in G then it has to be defeated by one of the matchings in K.
@InProceedings{kavitha:LIPIcs.STACS.2022.41, author = {Kavitha, Telikepalli}, title = {{Fairly Popular Matchings and Optimality}}, booktitle = {39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)}, pages = {41:1--41:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-222-8}, ISSN = {1868-8969}, year = {2022}, volume = {219}, editor = {Berenbrink, Petra and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.41}, URN = {urn:nbn:de:0030-drops-158516}, doi = {10.4230/LIPIcs.STACS.2022.41}, annote = {Keywords: Bipartite graphs, Stable matchings, Mixed matchings, Polytopes} }
Feedback for Dagstuhl Publishing