We study the repeated balls-into-bins process introduced by Becchetti, Clementi, Natale, Pasquale and Posta (2019). This process starts with m balls arbitrarily distributed across n bins. At each round t = 1,2,…, one ball is selected from each non-empty bin, and then placed it into a bin chosen independently and uniformly at random. We prove the following results: - For any n ⩽ m ⩽ poly(n), we prove a lower bound of Ω(m/n ⋅ log n) on the maximum load. For the special case m = n, this matches the upper bound of 𝒪(log n), as shown in [Luca Becchetti et al., 2019]. It also provides a positive answer to the conjecture in [Luca Becchetti et al., 2019] that for m = n the maximum load is ω(log n/ log log n) at least once in a polynomially large time interval. For m ∈ [ω(n), n log n], our new lower bound disproves the conjecture in [Luca Becchetti et al., 2019] that the maximum load remains 𝒪(log n). - For any n ⩽ m ⩽ poly(n), we prove an upper bound of 𝒪(m/n ⋅ log n) on the maximum load for all steps of a polynomially large time interval. This matches our lower bound up to multiplicative constants. - For any m ⩾ n, our analysis also implies an 𝒪(m²/n) waiting time to reach a configuration with a 𝒪(m/n ⋅ log m) maximum load, even for worst-case initial distributions. - For m ⩾ n, we show that every ball visits every bin in 𝒪(m log m) rounds. For m = n, this improves the previous upper bound of 𝒪(n log² n) in [Luca Becchetti et al., 2019]. We also prove that the upper bound is tight up to multiplicative constants for any n ⩽ m ⩽ poly(n).
@InProceedings{los_et_al:LIPIcs.STACS.2023.45, author = {Los, Dimitrios and Sauerwald, Thomas}, title = {{Tight Bounds for Repeated Balls-Into-Bins}}, booktitle = {40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)}, pages = {45:1--45:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-266-2}, ISSN = {1868-8969}, year = {2023}, volume = {254}, editor = {Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.45}, URN = {urn:nbn:de:0030-drops-176975}, doi = {10.4230/LIPIcs.STACS.2023.45}, annote = {Keywords: Repeated balls-into-bins, self-stabilizing systems, balanced allocations, potential functions, random walks} }
Feedback for Dagstuhl Publishing