Directed Regular and Context-Free Languages

Authors Moses Ganardi , Irmak Sağlam , Georg Zetzsche



PDF
Thumbnail PDF

File

LIPIcs.STACS.2024.36.pdf
  • Filesize: 0.98 MB
  • 20 pages

Document Identifiers

Author Details

Moses Ganardi
  • Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
Irmak Sağlam
  • Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
Georg Zetzsche
  • Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Cite AsGet BibTex

Moses Ganardi, Irmak Sağlam, and Georg Zetzsche. Directed Regular and Context-Free Languages. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 36:1-36:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.STACS.2024.36

Abstract

We study the problem of deciding whether a given language is directed. A language L is directed if every pair of words in L have a common (scattered) superword in L. Deciding directedness is a fundamental problem in connection with ideal decompositions of downward closed sets. Another motivation is that deciding whether two directed context-free languages have the same downward closures can be decided in polynomial time, whereas for general context-free languages, this problem is known to be coNEXP-complete. We show that the directedness problem for regular languages, given as NFAs, belongs to AC¹, and thus polynomial time. Moreover, it is NL-complete for fixed alphabet sizes. Furthermore, we show that for context-free languages, the directedness problem is PSPACE-complete.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Concurrency
  • Theory of computation → Formal languages and automata theory
Keywords
  • Subword
  • ideal
  • language
  • regular
  • context-free
  • equivalence
  • downward closure
  • compression

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis of systems with unbounded, lossy FIFO channels. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verification, 10th International Conference, CAV '98, Vancouver, BC, Canada, June 28 - July 2, 1998, Proceedings, volume 1427 of Lecture Notes in Computer Science, pages 305-318. Springer, 1998. URL: https://doi.org/10.1007/BFb0028754.
  2. Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and Bengt Jonsson. Using forward reachability analysis for verification of lossy channel systems. Formal Methods Syst. Des., 25(1):39-65, 2004. URL: https://doi.org/10.1023/B:FORM.0000033962.51898.1a.
  3. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974. Google Scholar
  4. Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theor. Comput. Sci., 107(1):3-30, 1993. URL: https://doi.org/10.1016/0304-3975(93)90252-O.
  5. Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis for concurrent programs with dynamic creation of threads. Log. Methods Comput. Sci., 7(4), 2011. URL: https://doi.org/10.2168/LMCS-7(4:4)2011.
  6. Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar, Prakash Saivasan, and Georg Zetzsche. The complexity of regular abstractions of one-counter languages. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016, pages 207-216. ACM, 2016. URL: https://doi.org/10.1145/2933575.2934561.
  7. Aistis Atminas and Vadim V. Lozin. Deciding atomicity of subword-closed languages. In Volker Diekert and Mikhail V. Volkov, editors, Developments in Language Theory - 26th International Conference, DLT 2022, Tampa, FL, USA, May 9-13, 2022, Proceedings, volume 13257 of Lecture Notes in Computer Science, pages 69-77. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-05578-2_5.
  8. Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for the sub- and superword closure of CFLs: Descriptional and computational complexity. In Adrian-Horia Dediu, Enrico Formenti, Carlos Martín-Vide, and Bianca Truthe, editors, Language and Automata Theory and Applications - 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings, volume 8977 of Lecture Notes in Computer Science, pages 473-485. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-15579-1_37.
  9. David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Pawel Parys. Cost automata, safe schemes, and downward closures. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 109:1-109:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.109.
  10. Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Checking refinement of asynchronous programs against context-free specifications. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 110:1-110:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.110.
  11. Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-bounded analysis of concurrent programs (invited talk). In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 3:1-3:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.3.
  12. Pascal Baumann, Moses Ganardi, Ramanathan S. Thinniyam, and Georg Zetzsche. Existential definability over the subword ordering. In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages 7:1-7:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.STACS.2022.7.
  13. Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. The complexity of bounded context switching with dynamic thread creation. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 111:1-111:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.111.
  14. Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-bounded verification of thread pools. Proc. ACM Program. Lang., 6(POPL):1-28, 2022. URL: https://doi.org/10.1145/3498678.
  15. Jean Berstel. Transductions and Context-Free Languages. Teubner, 1979. Google Scholar
  16. Michael Blondin, Alain Finkel, and Jean Goubault-Larrecq. Forward analysis for WSTS, part III: Karp-Miller trees. In Satya V. Lokam and R. Ramanujam, editors, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2017, December 11-15, 2017, Kanpur, India, volume 93 of LIPIcs, pages 16:1-16:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2017.16.
  17. Michael Blondin, Alain Finkel, and Pierre McKenzie. Well behaved transition systems. Log. Methods Comput. Sci., 13(3), 2017. URL: https://doi.org/10.23638/LMCS-13(3:24)2017.
  18. Michael Blondin, Alain Finkel, and Pierre McKenzie. Handling infinitely branching well-structured transition systems. Inf. Comput., 258:28-49, 2018. URL: https://doi.org/10.1016/j.ic.2017.11.001.
  19. Manuel Bodirsky, Jakub Rydval, and André Schrottenloher. Universal Horn sentences and the joint embedding property. Discret. Math. Theor. Comput. Sci., 23(2), 2021. URL: https://doi.org/10.46298/dmtcs.7435.
  20. Samuel Braunfeld. The undecidability of joint embedding and joint homomorphism for hereditary graph classes. Discret. Math. Theor. Comput. Sci., 21(2), 2019. URL: https://doi.org/10.23638/DMTCS-21-2-9.
  21. Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem for higher-order recursion schemes is decidable. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016, pages 96-105. ACM, 2016. URL: https://doi.org/10.1145/2933575.2934527.
  22. Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf. Control., 64(1-3):2-21, 1985. URL: https://doi.org/10.1016/S0019-9958(85)80041-3.
  23. Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS, 44:178-186, January 1991. Google Scholar
  24. Wojciech Czerwinski, Slawomir Lasota, Roland Meyer, Sebastian Muskalla, K. Narayan Kumar, and Prakash Saivasan. Regular separability of well-structured transition systems. In Sven Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of LIPIcs, pages 35:1-35:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2018.35.
  25. Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part II: complete WSTS. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th Internatilonal Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, volume 5556 of Lecture Notes in Computer Science, pages 188-199. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-02930-1_16.
  26. Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part I: completions. In Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of LIPIcs, pages 433-444. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009. URL: https://doi.org/10.4230/LIPIcs.STACS.2009.1844.
  27. Moses Ganardi, Irmak Sağlam, and Georg Zetzsche. Directed regular and context-free languages, 2024. URL: https://arxiv.org/abs/2401.07106.
  28. Jean Goubault-Larrecq, Simon Halfon, Prateek Karandikar, K. Narayan Kumar, and Philippe Schnoebelen. The ideal approach to computing closed subsets in well-quasi-ordering. CoRR, abs/1904.10703, 2019. URL: https://arxiv.org/abs/1904.10703.
  29. Jean Goubault-Larrecq and Sylvain Schmitz. Deciding piecewise testable separability for regular tree languages. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 97:1-97:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.97.
  30. Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri net languages. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II, volume 6199 of Lecture Notes in Computer Science, pages 466-477. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-14162-1_39.
  31. Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward closures of higher-order pushdown automata. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 151-163. ACM, 2016. URL: https://doi.org/10.1145/2837614.2837627.
  32. Leonard H. Haines. On free monoids partially ordered by embedding. Journal of Combinatorial Theory, 6(1):94-98, 1969. URL: https://doi.org/10.1016/S0021-9800(69)80111-0.
  33. Simon Halfon. On Effective Representations of Well Quasi-Orderings. PhD thesis, Université Paris Saclay, 2018. URL: https://theses.hal.science/tel-01945232.
  34. P. Jullien. Sue un théorème d'extension dans la théorie des mots. C. R. Acad. Sci. Paris, Ser. A, 266:851-854, 1968. Google Scholar
  35. Mustapha Kabil and Maurice Pouzet. Une extension d'un théorème de p. jullien sur les âges de mots. RAIRO Theor. Informatics Appl., 26:449-482, 1992. URL: https://doi.org/10.1051/ita/1992260504491.
  36. Ranko Lazic and Sylvain Schmitz. The ideal view on Rackoff’s coverability technique. Inf. Comput., 277:104582, 2021. URL: https://doi.org/10.1016/j.ic.2020.104582.
  37. Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 56-67. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/LICS.2015.16.
  38. Jérôme Leroux and Sylvain Schmitz. Ideal decompositions for vector addition systems (invited talk). In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 1:1-1:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.STACS.2016.1.
  39. Markus Lohrey. Leaf languages and string compression. Inf. Comput., 209(6):951-965, 2011. URL: https://doi.org/10.1016/j.ic.2011.01.009.
  40. Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complex. Cryptol., 4(2):241-299, 2012. URL: https://doi.org/10.1515/gcc-2012-0016.
  41. Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. General decidability results for asynchronous shared-memory programs: Higher-order and beyond. Log. Methods Comput. Sci., 18(4), 2022. URL: https://doi.org/10.46298/lmcs-18(4:2)2022.
  42. Wojciech Plandowski. Testing equivalence of morphisms on context-free languages. In Jan van Leeuwen, editor, Algorithms - ESA '94, Second Annual European Symposium, Utrecht, The Netherlands, September 26-28, 1994, Proceedings, volume 855 of Lecture Notes in Computer Science, pages 460-470. Springer, 1994. URL: https://doi.org/10.1007/BFb0049431.
  43. Saul Schleimer. Polynomial-time word problems. Commentarii mathematici helvetici, 83(4):741-765, 2008. Google Scholar
  44. Jeffrey O. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge University Press, 2008. URL: http://www.cambridge.org/gb/knowledge/isbn/item1173872/?site_locale=en_GB.
  45. Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20(5):865-877, 1991. URL: https://doi.org/10.1137/0220053.
  46. Salvatore La Torre, Anca Muscholl, and Igor Walukiewicz. Safety of parametrized asynchronous shared-memory systems is almost always decidable. In Luca Aceto and David de Frutos-Escrig, editors, 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 72-84. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2015.72.
  47. Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete Mathematics, 21(3):237-252, 1978. Google Scholar
  48. Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theoretical Computer Science. An EATCS Series. Springer, 1999. URL: https://doi.org/10.1007/978-3-662-03927-4.
  49. Georg Zetzsche. An approach to computing downward closures. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 440-451. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-47666-6_35.
  50. Georg Zetzsche. The complexity of downward closure comparisons. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 123:1-123:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.123.
  51. Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond subwords. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 929-938. ACM, 2018. URL: https://doi.org/10.1145/3209108.3209201.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail