Tree-Layout Based Graph Classes: Proper Chordal Graphs

Authors Christophe Paul , Evangelos Protopapas



PDF
Thumbnail PDF

File

LIPIcs.STACS.2024.55.pdf
  • Filesize: 1.02 MB
  • 18 pages

Document Identifiers

Author Details

Christophe Paul
  • CNRS, Université Montpellier, France
Evangelos Protopapas
  • CNRS, Université Montpellier, France

Cite AsGet BibTex

Christophe Paul and Evangelos Protopapas. Tree-Layout Based Graph Classes: Proper Chordal Graphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 55:1-55:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.STACS.2024.55

Abstract

Many important graph classes are characterized by means of layouts (a vertex ordering) excluding some patterns. For example, a graph G = (V,E) is a proper interval graph if and only if G has a layout 𝐋 such that for every triple of vertices such that x≺_𝐋 y≺_𝐋 z, if xz ∈ E, then xy ∈ E and yz ∈ E. Such a triple x, y, z is called an indifference triple. In this paper, we investigate the concept of excluding a set of patterns in tree-layouts rather than layouts. A tree-layout 𝐓_G = (T,r,ρ_G) of a graph G = (V,E) is a tree T rooted at some node r and equipped with a one-to-one mapping ρ_G between V and the nodes of T such that for every edge xy ∈ E, either x is an ancestor of y, denoted x≺_{𝐓_G} y, or y is an ancestor of x. Excluding patterns in a tree-layout is now defined using the ancestor relation. This leads to an unexplored territory of graph classes. In this paper, we initiate the study of such graph classes with the class of proper chordal graphs defined by excluding indifference triples in tree-layouts. Our results combine characterization, compact and canonical representation as well as polynomial time algorithms for the recognition and the graph isomorphism of proper chordal graphs. For this, one of the key ingredients is the introduction of the concept of FPQ-hierarchy generalizing the celebrated PQ-tree data-structure.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Mathematics of computing → Combinatorial algorithms
  • Mathematics of computing → Graph theory
  • Theory of computation → Data structures design and analysis
  • Theory of computation → Graph algorithms analysis
Keywords
  • Graph classes
  • Graph representation
  • Graph isomorphism

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974. Google Scholar
  2. S. Benzer. On the topology of the genetic fine structure. Proceedings of the National Academy of Science, 45(11):1607-1620, 1957. URL: https://doi.org/10.1073/pnas.45.11.1607.
  3. C. Berge. Färbung von Graphen deren sämtliche beziehungsweise deren ungerade Kreise starr sind (Zusammenfassung). Wissenschaftliche Zeitschrift, Martin Luther Univ. Halle-Wittenberg, Math.-Naturwiss, Reihe, pages 114-115, 1961. Google Scholar
  4. A.A. Bertossi. Finding Hamiltonian circuits in proper interval graphs. Information Processing Letters, 17:97-101, 1983. URL: https://doi.org/10.1016/0020-0190(83)90078-9.
  5. A.A. Bertossi and M.A. Bonuccelli. Hamiltonian circuits in interval graph generalizations. Information Processing Letters, 23:195-200, 1986. URL: https://doi.org/10.1016/0020-0190(86)90135-3.
  6. D. Bienstock. On embedding graphs in trees. Journal of Combinatorial Theory, Series B, 49(1):103-136, 1990. URL: https://doi.org/10.1016/0095-8956(90)90066-9.
  7. K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval graphs and graph planarity using pq-tree algorithm. J. Comput. Syst. Sci., 13:335-379, 1976. Google Scholar
  8. A. Brandstädt, V.B. Le, and J. Spinrad. Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, 1999. Google Scholar
  9. S. Chaplick. Intersection graphs of non-crossing paths. In International Workshop on Graph Theoretical Concepts in Computer Science (WG), volume 11789 of Lecture Notes in Computer Science, pages 311-324, 2019. URL: https://doi.org/10.1007/978-3-030-30786-8_24.
  10. M. Chein, M. Habib, and M.-C. Maurer. Partitive hypergraphs. Discrete Mathematics, 37:35-50, 1981. URL: https://doi.org/10.1016/0012-365X(81)90138-2.
  11. D.G. Corneil, H. Lerchs, and L.K. Stewart-Burlingham. Complement reducible graphs. Discrete Applied Mathematics, 3(1):163-174, 1981. URL: https://doi.org/10.1016/0166-218X(81)90013-5.
  12. W.H. Cunningham and J. Edmonds. A combinatorial decomposition theory. Canadian Journal of Mathematics, 32(3):734-765, 1980. URL: https://doi.org/10.4153/CJM-1980-057-7.
  13. Peter Damaschke. Forbbiden ordered subgraphs. Topics in Combinatorics and Graph Theory, pages 219-229, 1990. URL: https://doi.org/10.1007/978-3-642-46908-4_25.
  14. G. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 25:71-76, 1961. Google Scholar
  15. P. Duchet. Classical perfect graphs: An introduction with emphasis on triangulated and interval graphs. In C. Berge and V. Chvátal, editors, Topics on Perfect Graphs, volume 88 of North-Holland Mathematics Studies, pages 67-96. North-Holland, 1984. URL: https://doi.org/10.1016/S0304-0208(08)72924-4.
  16. Dwight Duffus, Mark Ginn, and Vojtĕch Rödl. On the computational complexity of ordered subgraph recognition. Random Structure and Algorithms, 7(3):223-268, 1995. URL: https://doi.org/10.1002/rsa.3240070304.
  17. Laurent Feuilloley and Michel Habib. Graph classes and forbidden patterns on three vertices. SIAM Journal on Discrete Mathematics, 35(1):55-90, 2021. URL: https://doi.org/10.1137/19M1280399.
  18. T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hungarica, 18(1):25-66, 1967. URL: https://doi.org/10.1007/BF02020961.
  19. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory Series B, 16:47-56, 1974. URL: https://doi.org/10.1016/0095-8956(74)90094-X.
  20. M. Ginn. Forbidden ordered subgraph vs. forbidden subgraph characterizations of graph classes. Journal of Graph Theory, 30(71-76), 1999. URL: https://doi.org/10.1002/(SICI)1097-0118(199902)30:2<71::AID-JGT1>3.0.CO;2-G.
  21. M.C. Golumbic. Trivially perfect graphs. Discrete Mathematics, 24:105-107, 1978. URL: https://doi.org/10.1016/0012-365X(78)90178-4.
  22. M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, 1980. URL: https://doi.org/10.1016/C2013-0-10739-8.
  23. S. Guzmán-Pro, P. Hell, and C. Hernández-Cruz. Describing hereditary properties by forbidden circular orderings. Applied Mathematics and Computation, 438:127555, 2023. URL: https://doi.org/10.1016/j.amc.2022.127555.
  24. M. Habib, R.M. McConnell, C. Paul, and L. Viennot. Lex-bfs and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science, 234:59-84, 2000. URL: https://doi.org/10.1016/S0304-3975(97)00241-7.
  25. M. Habib and C. Paul. A survey on algorithmic aspects of modular decomposition. Computer Science Review, 4:41-59, 2010. URL: https://doi.org/10.1016/j.cosrev.2010.01.001.
  26. A. Hajnal and J. Surányi. Über die Auflösung von Graphen in vollständige Teilgraphen. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Mathematica, 1:113-121, 1958. Google Scholar
  27. G. Hajös. Über eine Art von Graphen. Internationale Mathematische Nachrichten, 11, 1957. Problem 65. Google Scholar
  28. Pavol Hell, Bojan Mohar, and Arash Rafiey. Ordering without forbidden patterns. In Annual European Symposium on Algorithms (ESA), volume 8737 of Lecture Notes in Computer Science, pages 554-565, 2014. URL: https://doi.org/10.1007/978-3-662-44777-2_46.
  29. W.-L. Hsu. o(n.m) algorithms for the recognition and isomorphism problems on circular-arc graphs. SIAM Journal on Computing, 24(3):411-439, 1995. URL: https://doi.org/10.1137/s0097539793260726.
  30. L. Ibarra. A simple algorithm to find hamiltonian cycles in proper interval graphs. Information Processing Letters, 109:1105-1108, 2009. URL: https://doi.org/10.1016/j.ipl.2009.07.010.
  31. J.M. Keil. Finding Hamiltonian circuits in interval graphs. Information Processing Letters, 20:201-206, 1985. URL: https://doi.org/10.1016/0020-0190(85)90050-X.
  32. H. Lerchs. On cliques and kernels. Technical report, Departement of Computer Science, University of Toronto, 1971. Google Scholar
  33. J. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences, 20(2):219-230, 1980. URL: https://doi.org/10.1016/0022-0000(80)90060-4.
  34. G. Liotta, I. Rutter, and A. Tappini. Simultaneous FPQ-ordering and hybrid planarity testing. Theoretical Computer Science, 874:59-79, 2021. URL: https://doi.org/10.1016/j.tcs.2021.05.012.
  35. P. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs. Computers and Mathematics with Applications, 25(7):15-25, 1993. URL: https://doi.org/10.1016/0898-1221(93)90308-I.
  36. G.S. Lueker and K.S. Booth. A linear time algorithm for deciding interval graphs isomorphism. Journal of ACM, 26(2):183-195, 1979. URL: https://doi.org/10.1145/322123.322125.
  37. R.H. Möhring and F.J. Radermacher. Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Mathematics, 19:257-356, 1984. Google Scholar
  38. H. Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics, 156:291-298, 1996. URL: https://doi.org/10.1016/0012-365X(95)00057-4.
  39. J. Nešetřil and P. Ossona de Mendez. Tree-depth, subgraph coloring and homomorphism bounds. European Journal of Combinatorics, 27(6):1022-1041, 2006. URL: https://doi.org/10.1016/j.ejc.2005.01.010.
  40. S. Olariu. An optimal greedy heuristic to color interval graphs. Information Processing Letters, 37:21-25, 1991. URL: https://doi.org/10.1016/0020-0190(91)90245-D.
  41. F.S. Roberts. Representations of indifference relations. PhD thesis, Standford University, 1968. Google Scholar
  42. F.S. Roberts. Indifference graphs. In F. Harrary, editor, Proof Techniques in Graph Theory, pages 139-146, 1969. Google Scholar
  43. D. Rose. Triangulated graphs and the elimination process. Journal of Mathematical Analysis and Applications, 32(597-609), 1970. URL: https://doi.org/10.1016/0022-247X(70)90282-9.
  44. Dale J. Skrien. A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular-arc graphs, and nested interval graphs. Journal of Graph Theory, 6:309-316, 1982. URL: https://doi.org/10.1002/jgt.3190060307.
  45. D.P. Sumner. Graphs indecomposable with respect to the X-join. Discrete Mathematics, 6:281-298, 1973. URL: https://doi.org/10.1016/0012-365X(73)90100-3.
  46. R. Uehara, S. Toda, and T. Nagoya. Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs. Discrete Applied Mathematics, 145:479-482, 2005. URL: https://doi.org/doi:10.1016/j.dam.2004.06.008.
  47. G. Valiente. Algorithms on trees and graphs. Texts in Computer Science. Springer, 2002. URL: https://doi.org/10.1007/978-3-030-81885-2.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail