Faster Graph Algorithms Through DAG Compression

Authors Max Bannach , Florian Andreas Marwitz , Till Tantau



PDF
Thumbnail PDF

File

LIPIcs.STACS.2024.8.pdf
  • Filesize: 0.77 MB
  • 18 pages

Document Identifiers

Author Details

Max Bannach
  • European Space Agency, Advanced Concepts Team, Noordwijk, The Netherlands
Florian Andreas Marwitz
  • Institute of Information Systems, Universität zu Lübeck, Germany
Till Tantau
  • Institute for Theoretical Computer Science, Universität zu Lübeck, Germany

Cite AsGet BibTex

Max Bannach, Florian Andreas Marwitz, and Till Tantau. Faster Graph Algorithms Through DAG Compression. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.STACS.2024.8

Abstract

The runtime of graph algorithms such as depth-first search or Dijkstra’s algorithm is dominated by the fact that all edges of the graph need to be processed at least once, leading to prohibitive runtimes for large, dense graphs. We introduce a simple data structure for storing graphs (and more general structures) in a compressed manner using directed acyclic graphs (dags). We then show that numerous standard graph problems can be solved in time linear in the size of the dag compression of a graph, rather than in the number of edges of the graph. Crucially, many dense graphs, including but not limited to graphs of bounded twinwidth, have a dag compression of size linear in the number of vertices rather than edges. This insight allows us to improve the previous best results for the runtime of standard algorithms from quasi-linear to linear for the large class of graphs of bounded twinwidth, which includes all cographs, graphs of bounded treewidth, or graphs of bounded cliquewidth.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Data structures design and analysis
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • graph compression
  • graph traversal
  • twinwidth
  • parameterized algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Faisal N. Abu-Khzam, Michael A. Langston, Amer E. Mouawad, and Clinton P. Nolan. A hybrid graph representation for recursive backtracking algorithms. In Proceedings of the 4th International Workshop on Frontiers in Algorithmics (FAW 2010), volume 6213 of Lecture Notes in Computer Science, pages 136-147. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-14553-7_15.
  2. Jungho Ahn, Debsoumya Chakraborti, Kevin Hendrey, Donggyu Kim, and Sang il Oum. Twin-width of random graphs. Technical Report arXiv:2212.07880, arXiv, 2022. URL: https://doi.org/10.48550/arXiv.2212.07880.
  3. Pierre Bergé, Èdouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is NP-complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, Proceedings of the 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics, pages 18:1-18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.ICALP.2022.18.
  4. Édouard Bonnet, Colin Geniet, Eun J. Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: Max independent set and coloring. In Proceedings of the 48th International Colloquium on Automata, Languages and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics, pages 35:1-35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ICALP.2021.35.
  5. Édouard Bonnet, Eun J. Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I: Tractable FO model checking. In Proceedings of the 61st Annual Symposium on Foundations of Computer Science (FOCS 2020), pages 601-612. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00062.
  6. Édouard Bonnet, Jaroslav Nesetril, Patrice O. de Mendez, Sebastian Siebertz, and Stephan Thomassé. Twin-width and permutations. In Proceedings of the European Conference on Combinatorics, Graph Theory and Applications 2023 (EUROCOMB 2023). Masaryk University, Brno, Czech Republic, 2023. URL: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-022.
  7. Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused crawling: A new approach to topic-specific web resource discovery. International Journal of Computer and Telecommunications Networking, 31(11-16):1623-1640, 1999. URL: https://doi.org/10.1016/S1389-1286(99)00052-3.
  8. Chris J. Cheney. A nonrecursive list compacting algorithm. Communications of the ACM, 13(11):677-678, 1970. URL: https://doi.org/10.1145/362790.362798.
  9. Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling through URL ordering. International Journal of Computer and Telecommunications Networking, 30(1-7):161-172, 1998. URL: https://doi.org/10.1016/S0169-7552(98)00108-1.
  10. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT Press and McGraw-Hill Book Company, 1989. Google Scholar
  11. Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959. URL: https://doi.org/10.1007/BF01386390.
  12. Jeff Erickson. Algorithms. Erickson, 2019. Google Scholar
  13. Robert Ganian, Filip Pokrývka, André Schidler, Kirill Simonov, and Stefan Szeider. Weighted model counting with twin-width. In Proceedings of the 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022), volume 236 of Leibniz International Proceedings in Informatics, pages 15:1-15:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SAT.2022.15.
  14. Michel Habib and Christophe Paul. A simple linear time algorithm for cograph recognition. Discrete Applied Mathematics, 145(2):183-197, 2005. URL: https://doi.org/10.1016/J.DAM.2004.01.011.
  15. Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Journal of Artificial Intelligence, 27(1):97-109, 1985. URL: https://doi.org/10.1016/0004-3702(85)90084-0.
  16. Stefan Kratsch, Florian Nelles, and Alexandre Simon. On triangle counting parameterized by twin-width. Technical Report arXiv:2202.06708, arXiv, 2022. URL: https://doi.org/10.48550/arXiv.2202.06708.
  17. David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. Journal of the ACM, 30(3):417-427, 1983. URL: https://doi.org/10.1145/2402.322385.
  18. Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summarization with bounded error. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD 2008), pages 419-432. Association for Computing Machinery, 2008. URL: https://doi.org/10.1145/1376616.1376661.
  19. James Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes Mathematicae (Proceedings), 80(5):406-424, 1977. URL: https://doi.org/10.1016/1385-7258(77)90055-5.
  20. Judea Pearl. Heuristics - Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, 1984. Google Scholar
  21. André Schidler and Stefan Szeider. A SAT approach to twin-width. In Proceedings of the Symposium on Algorithm Engineering and Experiments, (ALENEX 2022), pages 67-77. Society for Industrial and Applied Mathematics, 2022. URL: https://doi.org/10.1137/1.9781611977042.6.
  22. Micha Sharir. A strong-connectivity algorithm and its applications in data flow analysis. Computers & Mathematics with Applications, 7(1):67-72, 1981. URL: https://doi.org/10.1016/0898-1221(81)90008-0.
  23. Robert E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica, 6:171-185, 1976. URL: https://doi.org/10.1007/BF00268499.
  24. Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1-24, 2005. URL: https://doi.org/10.1145/1044731.1044732.
  25. Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient aggregation for graph summarization. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD 2008), pages 567-580. Association for Computing Machinery, 2008. URL: https://doi.org/10.1145/1376616.1376675.
  26. Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. Compression of weighted graphs. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2011), pages 965-973. Association for Computing Machinery, 2011. URL: https://doi.org/10.1145/2020408.2020566.
  27. Ning Zhang, Yuanyuan Tian, and Jignesh M. Patel. Discovery-driven graph summarization. In Proceedings of the 26th International Conference on Data Engineering (ICDE 2010), pages 880-891. IEEE, 2010. URL: https://doi.org/10.1109/ICDE.2010.5447830.
  28. Édouard Bonnet, Eun J. Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-width and polynomial kernels. In Petr A. Golovach and Meirav Zehavi, editors, Proceedings of the 16th International Symposium on Parameterized and Exact Computation, (IPEC 2021), volume 214 of Leibniz International Proceedings in Informatics, pages 10:1-10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.IPEC.2021.10.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail