Recognizing Map Graphs of Bounded Treewidth

Authors Patrizio Angelini , Michael A. Bekos , Giordano Da Lozzo , Martin Gronemann , Fabrizio Montecchiani , Alessandra Tappini

Thumbnail PDF


  • Filesize: 1.1 MB
  • 18 pages

Document Identifiers

Author Details

Patrizio Angelini
  • Department of Mathematics, Natural, and Applied Sciences, John Cabot University, Rome, Italy
Michael A. Bekos
  • Department of Mathematics, University of Ioannina, Greece
Giordano Da Lozzo
  • Department of Engineering, Roma Tre University, Rome, Italy
Martin Gronemann
  • Algorithms and Complexity Group, Technische Universität Wien, Austria
Fabrizio Montecchiani
  • Department of Engineering, University of Perugia, Italy
Alessandra Tappini
  • Department of Engineering, University of Perugia, Italy


We thank the anonymous reviewers of a previous version of this paper for pointing out that the map recognition problem admits an MSO₂ formulation.

Cite AsGet BibTex

Patrizio Angelini, Michael A. Bekos, Giordano Da Lozzo, Martin Gronemann, Fabrizio Montecchiani, and Alessandra Tappini. Recognizing Map Graphs of Bounded Treewidth. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


A map graph is one admitting a representation in which vertices are nations on a spherical map and edges are shared curve segments or points between nations. We present an explicit fixed-parameter tractable algorithm for recognizing map graphs parameterized by treewidth. The algorithm has time complexity that is linear in the size of the graph and, if the input is a yes-instance, it reports a certificate in the form of a so-called witness. Furthermore, this result is developed within a more general algorithmic framework that allows to test, for any k, if the input graph admits a k-map (where at most k nations meet at a common point) or a hole-free k-map (where each point is covered by at least one nation). We point out that, although bounding the treewidth of the input graph also bounds the size of its largest clique, the latter alone does not seem to be a strong enough structural limitation to obtain an efficient time complexity. In fact, while the largest clique in a k-map graph is ⌊ 3k/2 ⌋, the recognition of k-map graphs is still open for any fixed k ≥ 5.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Mathematics of computing → Graph algorithms
  • Map graphs
  • Recognition
  • Parameterized complexity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Ignaz Rutter. Intersection-link representations of graphs. J. Graph Algorithms Appl., 21(4):731-755, 2017. Google Scholar
  2. Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25(6):1305-1317, 1996. Google Scholar
  3. Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358-402, 1996. URL:
  4. Franz J. Brandenburg. Characterizing 5-map graphs by 2-fan-crossing graphs. Discret. Appl. Math., 268:10-20, 2019. Google Scholar
  5. Franz J. Brandenburg. Characterizing and recognizing 4-map graphs. Algorithmica, 81(5):1818-1843, 2019. Google Scholar
  6. Zhi-Zhong Chen. Approximation algorithms for independent sets in map graphs. J. Algorithms, 41(1):20-40, 2001. Google Scholar
  7. Zhi-Zhong Chen. New bounds on the edge number of a k-map graph. J. Graph Theory, 55(4):267-290, 2007. URL:
  8. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Planar map graphs. In STOC, pages 514-523. ACM, 1998. Google Scholar
  9. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Map graphs. J. ACM, 49(2):127-138, 2002. Google Scholar
  10. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Recognizing hole-free 4-map graphs in cubic time. Algorithmica, 45(2):227-262, 2006. Google Scholar
  11. Zhi-Zhong Chen, Xin He, and Ming-Yang Kao. Nonplanar topological inference and political-map graphs. In SODA, pages 195-204. ACM/SIAM, 1999. Google Scholar
  12. Graham Cormode. Data sketching. ACM Queue, 15(2):60, 2017. Google Scholar
  13. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990. Google Scholar
  14. Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci., 46(2):218-270, 1993. Google Scholar
  15. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  16. Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algorithms, 1(1):33-47, 2005. Google Scholar
  17. Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Orthogonal planarity testing of bounded treewidth graphs. J. Comput. Syst. Sci., 125:129-148, 2022. Google Scholar
  18. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, 1999. Google Scholar
  19. Vida Dujmovic, David Eppstein, and David R. Wood. Structure of graphs with locally restricted crossings. SIAM J. Discret. Math., 31(2):805-824, 2017. URL:
  20. Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R. Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1-22:38, 2020. URL:, URL:
  21. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-deletion: Approximation, kernelization and optimal FPT algorithms. In FOCS, pages 470-479. IEEE, 2012. Google Scholar
  22. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Decomposition of map graphs with applications. In ICALP, volume 132 of LIPIcs, pages 60:1-60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Google Scholar
  23. Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric graphs. In SODA, pages 1563-1575. SIAM, 2012. Google Scholar
  24. Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196-217, 2010. Google Scholar
  25. Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization algorithm. In SODA, pages 1802-1811. SIAM, 2014. Google Scholar
  26. Ton Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer, 1994. Google Scholar
  27. Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus. Algorithmica, 81(9):3655-3691, 2019. Google Scholar
  28. Matthias Mnich, Ignaz Rutter, and Jens M. Schmidt. Linear-time recognition of map graphs with outerplanar witness. Discret. Optim., 28:63-77, 2018. Google Scholar
  29. Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J. Algorithms, 7(3):309-322, 1986. Google Scholar
  30. Robert Endre Tarjan and Uzi Vishkin. Finding biconnected components and computing tree functions in logarithmic parallel time (extended summary). In FOCS, pages 12-20. IEEE, 1984. URL:
  31. Mikkel Thorup. Map graphs in polynomial time. In FOCS, pages 396-405. IEEE, 1998. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail