Document

# Recognizing Map Graphs of Bounded Treewidth

## File

LIPIcs.SWAT.2022.8.pdf
• Filesize: 1.1 MB
• 18 pages

## Acknowledgements

We thank the anonymous reviewers of a previous version of this paper for pointing out that the map recognition problem admits an MSO₂ formulation.

## Cite As

Patrizio Angelini, Michael A. Bekos, Giordano Da Lozzo, Martin Gronemann, Fabrizio Montecchiani, and Alessandra Tappini. Recognizing Map Graphs of Bounded Treewidth. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.SWAT.2022.8

## Abstract

A map graph is one admitting a representation in which vertices are nations on a spherical map and edges are shared curve segments or points between nations. We present an explicit fixed-parameter tractable algorithm for recognizing map graphs parameterized by treewidth. The algorithm has time complexity that is linear in the size of the graph and, if the input is a yes-instance, it reports a certificate in the form of a so-called witness. Furthermore, this result is developed within a more general algorithmic framework that allows to test, for any k, if the input graph admits a k-map (where at most k nations meet at a common point) or a hole-free k-map (where each point is covered by at least one nation). We point out that, although bounding the treewidth of the input graph also bounds the size of its largest clique, the latter alone does not seem to be a strong enough structural limitation to obtain an efficient time complexity. In fact, while the largest clique in a k-map graph is ⌊ 3k/2 ⌋, the recognition of k-map graphs is still open for any fixed k ≥ 5.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Fixed parameter tractability
• Mathematics of computing → Graph algorithms
##### Keywords
• Map graphs
• Recognition
• Parameterized complexity

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Ignaz Rutter. Intersection-link representations of graphs. J. Graph Algorithms Appl., 21(4):731-755, 2017.
2. Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25(6):1305-1317, 1996.
3. Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358-402, 1996. URL: https://doi.org/10.1006/jagm.1996.0049.
4. Franz J. Brandenburg. Characterizing 5-map graphs by 2-fan-crossing graphs. Discret. Appl. Math., 268:10-20, 2019.
5. Franz J. Brandenburg. Characterizing and recognizing 4-map graphs. Algorithmica, 81(5):1818-1843, 2019.
6. Zhi-Zhong Chen. Approximation algorithms for independent sets in map graphs. J. Algorithms, 41(1):20-40, 2001.
7. Zhi-Zhong Chen. New bounds on the edge number of a k-map graph. J. Graph Theory, 55(4):267-290, 2007. URL: https://doi.org/10.1002/jgt.20237.
8. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Planar map graphs. In STOC, pages 514-523. ACM, 1998.
9. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Map graphs. J. ACM, 49(2):127-138, 2002.
10. Zhi-Zhong Chen, Michelangelo Grigni, and Christos H. Papadimitriou. Recognizing hole-free 4-map graphs in cubic time. Algorithmica, 45(2):227-262, 2006.
11. Zhi-Zhong Chen, Xin He, and Ming-Yang Kao. Nonplanar topological inference and political-map graphs. In SODA, pages 195-204. ACM/SIAM, 1999.
12. Graham Cormode. Data sketching. ACM Queue, 15(2):60, 2017.
13. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990.
14. Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci., 46(2):218-270, 1993.
15. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
16. Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algorithms, 1(1):33-47, 2005.
17. Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Orthogonal planarity testing of bounded treewidth graphs. J. Comput. Syst. Sci., 125:129-148, 2022.
18. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, 1999.
19. Vida Dujmovic, David Eppstein, and David R. Wood. Structure of graphs with locally restricted crossings. SIAM J. Discret. Math., 31(2):805-824, 2017. URL: https://doi.org/10.1137/16M1062879.
20. Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R. Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1-22:38, 2020. URL: https://dl.acm.org/doi/10.1145/3385731, URL: https://doi.org/10.1145/3385731.
21. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-deletion: Approximation, kernelization and optimal FPT algorithms. In FOCS, pages 470-479. IEEE, 2012.
22. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Decomposition of map graphs with applications. In ICALP, volume 132 of LIPIcs, pages 60:1-60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
23. Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric graphs. In SODA, pages 1563-1575. SIAM, 2012.
24. Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196-217, 2010.
25. Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization algorithm. In SODA, pages 1802-1811. SIAM, 2014.
26. Ton Kloks. Treewidth, Computations and Approximations, volume 842 of LNCS. Springer, 1994.
27. Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus. Algorithmica, 81(9):3655-3691, 2019.
28. Matthias Mnich, Ignaz Rutter, and Jens M. Schmidt. Linear-time recognition of map graphs with outerplanar witness. Discret. Optim., 28:63-77, 2018.
29. Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J. Algorithms, 7(3):309-322, 1986.
30. Robert Endre Tarjan and Uzi Vishkin. Finding biconnected components and computing tree functions in logarithmic parallel time (extended summary). In FOCS, pages 12-20. IEEE, 1984. URL: https://doi.org/10.1109/SFCS.1984.715896.
31. Mikkel Thorup. Map graphs in polynomial time. In FOCS, pages 396-405. IEEE, 1998.
X

Feedback for Dagstuhl Publishing