Edge Multiway Cut and Node Multiway Cut Are Hard for Planar Subcubic Graphs

Authors Matthew Johnson , Barnaby Martin , Sukanya Pandey , Daniël Paulusma , Siani Smith , Erik Jan van Leeuwen



PDF
Thumbnail PDF

File

LIPIcs.SWAT.2024.29.pdf
  • Filesize: 1.02 MB
  • 17 pages

Document Identifiers

Author Details

Matthew Johnson
  • Durham University, UK
Barnaby Martin
  • Durham University, UK
Sukanya Pandey
  • Utrecht University, The Netherlands
Daniël Paulusma
  • Durham University, UK
Siani Smith
  • University of Bristol, UK
  • Heilbronn Institute for Mathematical Research, Bristol, UK
Erik Jan van Leeuwen
  • Utrecht University, The Netherlands

Acknowledgements

The authors wish to thank Jelle Oostveen for his helpful comments.

Cite AsGet BibTex

Matthew Johnson, Barnaby Martin, Sukanya Pandey, Daniël Paulusma, Siani Smith, and Erik Jan van Leeuwen. Edge Multiway Cut and Node Multiway Cut Are Hard for Planar Subcubic Graphs. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SWAT.2024.29

Abstract

It is known that the weighted version of Edge Multiway Cut (also known as Multiterminal Cut) is NP-complete on planar graphs of maximum degree 3. In contrast, for the unweighted version, NP-completeness is only known for planar graphs of maximum degree 11. In fact, the complexity of unweighted Edge Multiway Cut was open for graphs of maximum degree 3 for over twenty years. We prove that the unweighted version is NP-complete even for planar graphs of maximum degree 3. As weighted Edge Multiway Cut is polynomial-time solvable for graphs of maximum degree at most 2, we have now closed the complexity gap. We also prove that (unweighted) Node Multiway Cut (both with and without deletable terminals) is NP-complete for planar graphs of maximum degree 3. By combining our results with known results, we can apply two meta-classifications on graph containment from the literature. This yields full dichotomies for all three problems on H-topological-minor-free graphs and, should H be finite, on H-subgraph-free graphs as well. Previously, such dichotomies were only implied for H-minor-free graphs.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph theory
  • Theory of computation → Graph algorithms analysis
  • Theory of computation → Problems, reductions and completeness
Keywords
  • multiway cut
  • planar subcubic graph
  • complexity dichotomy
  • graph containment

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable graphs. Journal of Algorithms, 12:308-340, 1991. Google Scholar
  2. Benjamin Bergougnoux, Charis Papadopoulos, and Jan Arne Telle. Node multiway cut and subset feedback vertex set on graphs of bounded mim-width. Algorithmica, 84:1385-1417, 2022. Google Scholar
  3. Stan Birchfield and Carlo Tomasi. Multiway cut for stereo and motion with slanted surfaces. In Proc. ICCV 1999, pages 489-495. IEEE Computer Society, 1999. Google Scholar
  4. Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dusan Knop, Paloma T. Lima, Martin Milanic, Sebastian Ordyniak, Sukanya Pandey, and Ondrej Suchý. Treewidth is NP-complete on cubic graphs. In Proc. IPEC 2023, volume 285 of LIPIcs, pages 7:1-7:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. Google Scholar
  5. Édouard Bonnet, Dibyayan Chakraborty, and Julien Duron. Cutting Barnette graphs perfectly is hard. In Proc. WG 2023, volume 14093 of LNCS, pages 116-129. Springer, 2023. Google Scholar
  6. Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov random fields with efficient approximations. In Proc. CVPR 1998, pages 648-655. IEEE Computer Society, 1998. Google Scholar
  7. Gruia Călinescu and Cristina G. Fernandes. Multicuts in unweighted digraphs with bounded degree and bounded tree-width. Electronic Notes in Discrete Mathematics, 7:194-197, 2001. Google Scholar
  8. Gruia Călinescu, Howard J. Karloff, and Yuval Rabani. An improved approximation algorithm for Multiway cut. Journal of Computer and System Sciences, 60:564-574, 2000. Google Scholar
  9. Yixin Cao, Jianer Chen, and Jia-Hao Fan. An O^*(1.84^k) parameterized algorithm for the Multiterminal Cut problem. Information Processing Letters, 114:167-173, 2014. Google Scholar
  10. Jianer Chen, Yang Liu, and Songjian Lu. An improved parameterized algorithm for the Minimum Node Multiway Cut problem. Algorithmica, 55:1-13, 2009. Google Scholar
  11. Rajesh Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter tractability of Directed Multiway Cut parameterized by the size of the cutset. SIAM Journal on Computing, 42:1674-1696, 2013. Google Scholar
  12. Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. On Multiway Cut parameterized above lower bounds. ACM Transactions on Computation Theory, 5:3:1-3:11, 2013. Google Scholar
  13. Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing, 23:864-894, 1994. Google Scholar
  14. Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics, 8:399-404, 1956. Google Scholar
  15. Esther Galby, Dániel Marx, Philipp Schepper, Roohani Sharma, and Prafullkumar Tale. Domination and cut problems on chordal graphs with bounded leafage. In Proc. IPEC 2022, volume 249 of LIPIcs, pages 14:1-14:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  16. Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Multiway cuts in node weighted graphs. Journal of Algorithms, 50:49-61, 2004. Google Scholar
  17. David Hartvigsen. The Planar Multiterminal Cut problem. Discrete Applied Mathematics, 85:203-222, 1998. Google Scholar
  18. Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey, Siani Smith, and Erik Jan van Leeuwen. Complexity framework for forbidden subgraphs I: The framework. arXiv, 2022. URL: https://arxiv.org/abs/2211.12887.
  19. Philip N. Klein and Dániel Marx. Solving Planar k-Terminal Cut in O(n^c √k) time. In Proc. ICALP 2012, volume 7391 of LNCS, pages 569-580. Springer, 2012. Google Scholar
  20. Dániel Marx. A tight lower bound for Planar Multiway Cut with fixed number of terminals. In Proc. ICALP 2012, volume 7391 of LNCS, pages 677-688. Springer, 2012. Google Scholar
  21. Bojan Mohar. Face covers and the genus problem for apex graphs. Journal of Combinatorial Theory, Series B, 82:102-117, 2001. Google Scholar
  22. Sukanya Pandey and Erik Jan van Leeuwen. Planar Multiway Cut with terminals on few faces. In Proc. SODA 2022, pages 2032-2063. SIAM, 2022. Google Scholar
  23. Charis Papadopoulos and Spyridon Tzimas. Subset feedback vertex set on graphs of bounded independent set size. Theoretical Computer Science, 814:177-188, 2020. Google Scholar
  24. Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. Journal of Combinatorial Theory, Series B, 41:92-114, 1986. Google Scholar
  25. J. Sedlaác̆ek. Some properties of interchange graphs. In Theory of Graphs and Its Applications, pages 145-150. Academic Press, 1964. Google Scholar
  26. H.S. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE Transactions on Software Engineering, SE-3(1):85-93, 1977. Google Scholar
  27. Martin Škoviera and Peter Varša. NP-completeness of perfect matching index of cubic graphs. In Proc. STACS 2022, volume 219 of LIPIcs, pages 56:1-56:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  28. Radoslaw Ziemann and Pawel Zylinski. Vertex-edge domination in cubic graphs. Discrete Mathematics, 343:112075, 2020. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail