Document Open Access Logo

The Number of Holes in the Union of Translates of a Convex Set in Three Dimensions

Authors Boris Aronov, Otfried Cheong, Michael Gene Dobbins, Xavier Goaoc



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2016.10.pdf
  • Filesize: 0.59 MB
  • 16 pages

Document Identifiers

Author Details

Boris Aronov
Otfried Cheong
Michael Gene Dobbins
Xavier Goaoc

Cite AsGet BibTex

Boris Aronov, Otfried Cheong, Michael Gene Dobbins, and Xavier Goaoc. The Number of Holes in the Union of Translates of a Convex Set in Three Dimensions. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 10:1-10:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.SoCG.2016.10

Abstract

We show that the union of translates of a convex body in three dimensional space can have a cubic number holes in the worst case, where a hole in a set is a connected component of its compliment. This refutes a 20-year-old conjecture. As a consequence, we also obtain improved lower bounds on the complexity of motion planning problems and of Voronoi diagrams with convex distance functions.
Keywords
  • Union complexity
  • Convex sets
  • Motion planning

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal, Sariel Har-Peled, Haim Kaplan, and Micha Sharir. Union of random Minkowski sums and network vulnerability analysis. Discrete Comput. Geom., 52(3):551-582, 2014. Google Scholar
  2. Pankaj K. Agarwal, János Pach, and Micha Sharir. State of the union (of geometric objects). In Proc. Joint Summer Research Conf. on Discrete and Computational Geometry: 20 Years Later, volume 452 of Contemp. Math., pages 9-48. AMS, 2008. Google Scholar
  3. Boris Aronov, Otfried Cheong, Michael G. Dobbins, and Xavier Goaoc. The number of holes in the union of translates of a convex set in three dimensions. To appear in Discrete Comput. Geom., 2015. URL: http://arxiv.org/abs/1502.01779.
  4. Boris Aronov and Micha Sharir. On translational motion planning of a convex polyhedron in 3-space. SIAM J. Comput., 26(6):1785-1803, 1997. Google Scholar
  5. Franz Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv., 23:345-405, 1991. Google Scholar
  6. Karol Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fundamenta Mathematicae, 35:217-234, 1948. Google Scholar
  7. Kenneth L. Clarkson and Kasturi Varadarajan. Improved approximation algorithms for geometric set cover. Discrete Comput. Geom., 37(1):43-58, 2007. Google Scholar
  8. Alon Efrat and Micha Sharir. On the complexity of the union of fat convex objects in the plane. Discrete Comput. Geom., 23(2):171-189, 2000. Google Scholar
  9. Steven Fortune. Voronoi diagrams and Delaunay triangulations. In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 23, pages 513-528. CRC Press LLC, Boca Raton, FL, 2 edition, 2004. Google Scholar
  10. Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, UK, 2002. Google Scholar
  11. Christian Icking, Rolf Klein, Ngoc-Minh Lé, and Lihong Ma. Convex distance functions in 3-space are different. Fund. Inform., 22:331-352, 1995. URL: http://dx.doi.org/10.3233/FI-1995-2242.
  12. Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal ostacles. Discrete Comput. Geom., 1(1):59-71, 1986. Google Scholar
  13. Mikhail D. Kovalev. Svoistvo vypuklykh mnozhestv i ego prilozhenie (A property of convex sets and its application). Mat. Zametki, 44:89-99, 1988. In Russian. Google Scholar
  14. Joseph S. B. Mitchell and Joseph O'Rourke. Computational geometry column 42. Int. J. Comput. Geom. Ap., 11(05):573-582, 2001. Google Scholar
  15. James R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Menlo Park, CA, 1984. Google Scholar
  16. János Pach and Gábor Tardos. On the boundary complexity of the union of fat triangles. SIAM J. Comput., 31(6):1745-1760, 2002. Google Scholar
  17. Micha Sharir. Algorithmic motion planning. In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 47, pages 1037-1064. CRC Press LLC, Boca Raton, FL, 2 edition, 2004. Google Scholar
  18. Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, NY, USA, 2010. Google Scholar
  19. Boaz Tagansky. The Complexity of Substructures in Arrangments of Surfaces. PhD thesis, Tel Aviv University, 1996. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail