Document

# Inserting Multiple Edges into a Planar Graph

## File

LIPIcs.SoCG.2016.30.pdf
• Filesize: 0.56 MB
• 15 pages

## Cite As

Markus Chimani and Petr Hlinený. Inserting Multiple Edges into a Planar Graph. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.SoCG.2016.30

## Abstract

Let G be a connected planar (but not yet embedded) graph and F a set of additional edges not in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. An optimal solution to this problem is known to approximate the crossing number of the graph G+F. Finding an exact solution to MEI is NP-hard for general F, but linear time solvable for the special case of |F|=1 [Gutwenger et al, SODA 2001/Algorithmica] and polynomial time solvable when all of F are incident to a new vertex [Chimani et al, SODA 2009]. The complexity for general F but with constant k=|F| was open, but algorithms both with relative and absolute approximation guarantees have been presented [Chuzhoy et al, SODA 2011], [Chimani-Hlineny, ICALP 2011]. We show that the problem is fixed parameter tractable (FPT) in k for biconnected G, or if the cut vertices of G have bounded degrees. We give the first exact algorithm for this problem; it requires only O(|V(G)|) time for any constant k.
##### Keywords
• crossing number
• edge insertion
• parameterized complexity
• path homotopy
• funnel algorithm

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity relationship diagrams. Journal of Systems and Software, 4:163-173, 1984.
2. S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph layout problems. J. Comput. Syst. Sci., 28(2):300-343, 1984.
3. D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica, 5(1):93-109, 1990.
4. S. Cabello. Hardness of approximation for crossing number. Discrete & Computational Geometry, 49(2):348-358, 2013.
5. S. Cabello and B. Mohar. Crossing number and weighted crossing number of near-planar graphs. Algorithmica, 60(3):484-504, 2011.
6. S. Cabello and B. Mohar. Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM J. Comput., 42(5):1803-1829, 2013.
7. B. Chazelle. A theorem on polygon cutting with applications. In Proc. FOCS'82, pages 339-349. IEEE Computer Society, 1982.
8. M. Chimani. Computing Crossing Numbers. PhD thesis, TU Dortmund, Germany, 2008. URL: http://hdl.handle.net/2003/25955.
9. M. Chimani and C. Gutwenger. Advances in the planarization method: effective multiple edge insertions. J. Graph Algorithms Appl., 16(3):729-757, 2012.
10. M. Chimani, C. Gutwenger, P. Mutzel, and C. Wolf. Inserting a vertex into a planar graph. In Proc. SODA'09, pages 375-383, 2009.
11. M. Chimani and P. Hliněný. A tighter insertion-based approximation of the crossing number. In Proc. ICALP'11, volume 6755 of LNCS, pages 122-134. Springer, 2011.
12. M. Chimani, P. Hliněný, and P. Mutzel. Vertex insertion approximates the crossing number for apex graphs. European Journal of Combinatorics, 33:326-335, 2012.
13. J. Chuzhoy. An algorithm for the graph crossing number problem. In Proc. STOC'11, pages 303-312. ACM, 2011.
14. J. Chuzhoy, Y. Makarychev, and A. Sidiropoulos. On graph crossing number and edge planarization. In Proc. SODA'11, pages 1050-1069. ACM Press, 2011.
15. É. Colin de Verdière and A. Schrijver. Shortest vertex-disjoint two-face paths in planar graphs. ACM Transactions on Algorithms, 7(2):19, 2011.
16. G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on Computing, 25:956-997, 1996.
17. G. Even, S. Guha, and B. Schieber. Improved approximations of crossings in graph drawings and VLSI layout areas. SIAM J. Comput., 32(1):231-252, 2002.
18. M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Alg. Discr. Meth., 4:312-316, 1983.
19. I. Gitler, P. Hliněný, J. Leanos, and G. Salazar. The crossing number of a projective graph is quadratic in the face-width. Electronic Journal of Combinatorics, 15(1):#R46, 2008.
20. M. Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci., 68(2):285-302, 2004.
21. C. Gutwenger and P. Mutzel. A linear time implementation of SPQR trees. In Proc. GD'00, volume 1984 of LNCS, pages 77-90. Springer, 2001.
22. C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph. Algorithmica, 41(4):289-308, 2005.
23. J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class. Comput. Geom., 4:63-97, 1994.
24. P. Hliněný and M. Chimani. Approximating the crossing number of graphs embeddable in any orientable surface. In Proc. SODA'10, pages 918-927, 2010.
25. P. Hliněný and G. Salazar. On the crossing number of almost planar graphs. In Proc. GD'05, volume 4372 of LNCS, pages 162-173. Springer, 2006.
26. P. Hliněný and G. Salazar. Approximating the crossing number of toroidal graphs. In Proc. ISAAC'07, volume 4835 of LNCS, pages 148-159. Springer, 2007.
27. J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM Journal on Computing, 2(3):135-158, 1973.
28. K-I. Kawarabayashi and B. Reed. Computing crossing number in linear time. In Proc. STOC'07, pages 382-390, 2007.
29. P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest-path algorithms for planar graphs. In Proc. STOC'94, pages 27-37, 1994.
30. Y. Kobayashi and C. Sommer. On shortest disjoint paths in planar graphs. Discrete Optimization, 7(4):234-245, 2010.
31. D.-T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers. Networks, 14(3):393-410, 1984.
32. M. Schaefer. The graph crossing number and its variants: A survey. Electronic Journal of Combinatorics, #DS21, May 15, 2014.
33. M. Thorup. Undirected single source shortest paths with positive integer weights in linear time. Journal of the ACM, 46:362-394, 1999.
34. W. T. Tutte. Connectivity in graphs, volume 15 of Mathematical Expositions. University of Toronto Press, 1966.
35. T. Ziegler. Crossing Minimization in Automatic Graph Drawing. PhD thesis, Saarland University, Germany, 2001.
X

Feedback for Dagstuhl Publishing