Let V be a set of n points in R^d, which we call voters, where d is a fixed constant. A point p in R^d is preferred over another point p' in R^d by a voter v in V if dist(v,p) < dist(v,p'). A point p is called a plurality point if it is preferred by at least as many voters as any other point p'. We present an algorithm that decides in O(n log n) time whether V admits a plurality point in the L_2 norm and, if so, finds the (unique) plurality point. We also give efficient algorithms to compute the smallest subset W of V such that V - W admits a plurality point, and to compute a so-called minimum-radius plurality ball. Finally, we consider the problem in the personalized L_1 norm, where each point v in V has a preference vector <w_1(v), ...,w_d(v)> and the distance from v to any point p in R^d is given by sum_{i=1}^d w_i(v) cdot |x_i(v)-x_i(p)|. For this case we can compute in O(n^(d-1)) time the set of all plurality points of V. When all preference vectors are equal, the running time improves to O(n).
@InProceedings{deberg_et_al:LIPIcs.SoCG.2016.32, author = {de Berg, Mark and Gudmundsson, Joachim and Mehr, Mehran}, title = {{Faster Algorithms for Computing Plurality Points}}, booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)}, pages = {32:1--32:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-009-5}, ISSN = {1868-8969}, year = {2016}, volume = {51}, editor = {Fekete, S\'{a}ndor and Lubiw, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.32}, URN = {urn:nbn:de:0030-drops-59248}, doi = {10.4230/LIPIcs.SoCG.2016.32}, annote = {Keywords: computational geometry, computational social choice, voting theory, plurality points, Condorcet points} }
Feedback for Dagstuhl Publishing