LIPIcs.SoCG.2016.5.pdf
- Filesize: 0.58 MB
- 16 pages
We consider the problem of 2-coloring geometric hypergraphs. Specifically, we show that there is a constant m such that any finite set S of points in the plane can be 2-colored such that every axis-parallel square that contains at least m points from S contains points of both colors. Our proof is constructive, that is, it provides a polynomial-time algorithm for obtaining such a 2-coloring. By affine transformations this result immediately applies also when considering homothets of a fixed parallelogram.
Feedback for Dagstuhl Publishing