Coloring Points with Respect to Squares

Authors Eyal Ackerman, Balázs Keszegh, Máté Vizer



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2016.5.pdf
  • Filesize: 0.58 MB
  • 16 pages

Document Identifiers

Author Details

Eyal Ackerman
Balázs Keszegh
Máté Vizer

Cite AsGet BibTex

Eyal Ackerman, Balázs Keszegh, and Máté Vizer. Coloring Points with Respect to Squares. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.SoCG.2016.5

Abstract

We consider the problem of 2-coloring geometric hypergraphs. Specifically, we show that there is a constant m such that any finite set S of points in the plane can be 2-colored such that every axis-parallel square that contains at least m points from S contains points of both colors. Our proof is constructive, that is, it provides a polynomial-time algorithm for obtaining such a 2-coloring. By affine transformations this result immediately applies also when considering homothets of a fixed parallelogram.
Keywords
  • Geometric hypergraph coloring
  • Polychromatic coloring
  • Homothets
  • Cover-decomposability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eyal Ackerman and Rom Pinchasi. On coloring points with respect to rectangles. J. Comb. Theory, Ser. A, 120(4):811-815, 2013. URL: http://dx.doi.org/10.1016/j.jcta.2013.01.005.
  2. Deepak Ajwani, Khaled M. Elbassioni, Sathish Govindarajan, and Saurabh Ray. Conflict-free coloring for rectangle ranges using O(n^.382) colors. Discrete & Computational Geometry, 48(1):39-52, 2012. URL: http://dx.doi.org/10.1007/s00454-012-9425-5.
  3. Greg Aloupis, Jean Cardinal, Sébastien Collette, Stefan Langerman, David Orden, and Pedro Ramos. Decomposition of multiple coverings into more parts. Discrete &Computational Geometry, 44(3):706-723, 2010. URL: http://dx.doi.org/10.1007/s00454-009-9238-3.
  4. Prosenjit Bose, Paz Carmi, Sébastien Collette, and Michiel H. M. Smid. On the stretch factor of convex delaunay graphs. JoCG, 1(1):41-56, 2010. URL: http://jocg.org/index.php/jocg/article/view/5.
  5. Sarit Buzaglo, Rom Pinchasi, and Günter Rote. Topological hypergraphs. In János Pach, editor, Thirty Essays on Geometric Graph Theory, pages 71-81. Springer New York, 2013. URL: http://dx.doi.org/10.1007/978-1-4614-0110-0_6.
  6. Jean Cardinal, Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. Making triangles colorful. arXiv preprint arXiv:1212.2346, 2012. Google Scholar
  7. Jean Cardinal, Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. Making octants colorful and related covering decomposition problems. SIAM journal on discrete mathematics, 28(4):1948-1959, 2014. Google Scholar
  8. Jean Cardinal, Kolja B. Knauer, Piotr Micek, and Torsten Ueckerdt. Making triangles colorful. J. of Computational Geometry, 4(1):240-246, 2013. URL: http://jocg.org/index.php/jocg/article/view/136.
  9. Jean Cardinal, Kolja B. Knauer, Piotr Micek, and Torsten Ueckerdt. Making octants colorful and related covering decomposition problems. SIAM J. Discrete Math., 28(4):1948-1959, 2014. URL: http://dx.doi.org/10.1137/140955975.
  10. Timothy M. Chan. Conflict-free coloring of points with respect to rectangles and approximation algorithms for discrete independent set. In Tamal K. Dey and Sue Whitesides, editors, Symposuim on Computational Geometry 2012, SoCG '12, Chapel Hill, NC, USA, June 17-20, 2012, pages 293-302. ACM, 2012. URL: http://dx.doi.org/10.1145/2261250.2261293.
  11. Xiaomin Chen, János Pach, Mario Szegedy, and Gábor Tardos. Delaunay graphs of point sets in the plane with respect to axis-parallel rectangles. Random Struct. Algorithms, 34(1):11-23, 2009. URL: http://dx.doi.org/10.1002/rsa.20246.
  12. Matt Gibson and Kasturi Varadarajan. Optimally decomposing coverings with translates of a convex polygon. Discrete &Computational Geometry, 46(2):313-333, 2011. URL: http://dx.doi.org/10.1007/s00454-011-9353-9.
  13. Sariel Har-Peled and Shakhar Smorodinsky. Conflict-free coloring of points and simple regions in the plane. Discrete & Computational Geometry, 34(1):47-70, 2005. URL: http://dx.doi.org/10.1007/s00454-005-1162-6.
  14. Balázs Keszegh. Coloring half-planes and bottomless rectangles. Computational Geometry, 45(9):495-507, 2012. Google Scholar
  15. Balázs Keszegh and Dömötör Pálvölgyi. Octants are cover-decomposable. Discrete &Computational Geometry, 47(3):598-609, 2012. Google Scholar
  16. Balázs Keszegh and Dömötör Pálvölgyi. Convex polygons are self-coverable. Discrete &Computational Geometry, 51(4):885-895, 2014. Google Scholar
  17. Balázs Keszegh and Dömötör Pálvölgyi. Octants are cover-decomposable into many coverings. Computational Geometry, 47(5):585-588, 2014. Google Scholar
  18. Balázs Keszegh and Dömötör Pálvölgyi. More on decomposing coverings by octants. Journal of Computational Geometry, 6(1):300-315, 2015. Google Scholar
  19. Rolf Klein. Concrete and abstract Voronoi diagrams, volume 400. Springer Science &Business Media, 1989. Google Scholar
  20. István Kovács. Indecomposable coverings with homothetic polygons. Discrete & Computational Geometry, 53(4):817-824, 2015. URL: http://dx.doi.org/10.1007/s00454-015-9687-9.
  21. L. Ma. Bisectors and Voronoi Diagrams for Convex Distance Functions. PhD thesis, FernUniversität Hagen, Germany, 2000. Google Scholar
  22. János Pach. Decomposition of multiple packing and covering. In 2. Kolloquium über Diskrete Geometrie, number DCG-CONF-2008-001, pages 169-178. Institut für Mathematik der Universität Salzburg, 1980. Google Scholar
  23. János Pach. Covering the plane with convex polygons. Discrete & Computational Geometry, 1:73-81, 1986. URL: http://dx.doi.org/10.1007/BF02187684.
  24. János Pach and Dömötör Pálvölgyi. Indecomposable coverings. In Proc. 41st Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG), to appear. Google Scholar
  25. János Pach, Dömötör Pálvölgyi, and Géza Toth. Survey on decomposition of multiple coverings. In Imre Bárány, Károly J. Böröczky, Gábor Fejes Tóth, and János Pach, editors, Geometry - Intuitive, Discrete, and Convex, volume 24 of Bolyai Society Mathematical Studies, pages 219-257. Springer Berlin Heidelberg, 2013. Google Scholar
  26. János Pach and Gábor Tardos. Coloring axis-parallel rectangles. Journal of Combinatorial Theory, Series A, 117(6):776-782, 2010. URL: http://dx.doi.org/10.1016/j.jcta.2009.04.007.
  27. János Pach, Gábor Tardos, and Géza Tóth. Indecomposable coverings. In Jin Akiyama, William Y. C. Chen, Mikio Kano, Xueliang Li, and Qinglin Yu, editors, Discrete Geometry, Combinatorics and Graph Theory, 7th China-Japan Conference, CJCDGCGT 2005, Tianjin, China, November 18-20, 2005, Xi'an, China, November 22-24, 2005, Revised Selected Papers, volume 4381 of Lecture Notes in Computer Science, pages 135-148. Springer, 2005. URL: http://dx.doi.org/10.1007/978-3-540-70666-3_15.
  28. János Pach, Gábor Tardos, and Géza Tóth. Indecomposable coverings. Canadian mathematical bulletin, 52(3):451-463, 2009. Google Scholar
  29. János Pach and Géza Tóth. Conflict-free colorings. In Boris Aronov, Saugata Basu, János Pach, and Micha Sharir, editors, Discrete and Computational Geometry, volume 25 of Algorithms and Combinatorics, pages 665-671. Springer Berlin Heidelberg, 2003. URL: http://dx.doi.org/10.1007/978-3-642-55566-4_30.
  30. János Pach and Géza Tóth. Decomposition of multiple coverings into many parts. Comput. Geom., 42(2):127-133, 2009. URL: http://dx.doi.org/10.1016/j.comgeo.2008.08.002.
  31. Dömötör Pálvölgyi. Indecomposable coverings with concave polygons. Discrete & Computational Geometry, 44(3):577-588, 2010. URL: http://dx.doi.org/10.1007/s00454-009-9194-y.
  32. Dömötör Pálvölgyi. Indecomposable coverings with unit discs. CoRR, abs/1310.6900, 2013. URL: http://arxiv.org/abs/1310.6900.
  33. Dömötör Pálvölgyi and Géza Tóth. Convex polygons are cover-decomposable. Discrete & Computational Geometry, 43(3):483-496, 2010. URL: http://dx.doi.org/10.1007/s00454-009-9133-y.
  34. Deniz Sariöz. Generalized delaunay graphs with respect to any convex set are plane graphs. CoRR, abs/1012.4881, 2010. URL: http://arxiv.org/abs/1012.4881.
  35. Shakhar Smorodinsky. Conflict-free coloring and its applications. In Imre Bárány, Károly J. Böröczky, Gábor Fejes Tóth, and János Pach, editors, Geometry - Intuitive, Discrete, and Convex, volume 24 of Bolyai Society Mathematical Studies, pages 331-389. Springer Berlin Heidelberg, 2013. URL: http://dx.doi.org/10.1007/978-3-642-41498-5_12.
  36. Shakhar Smorodinsky and Yelena Yuditsky. Polychromatic coloring for half-planes. Journal of Combinatorial Theory, Series A, 119(1):146 - 154, 2012. Google Scholar
  37. Gábor Tardos and Géza Tóth. Multiple coverings of the plane with triangles. Discrete & Computational Geometry, 38(2):443-450, 2007. URL: http://dx.doi.org/10.1007/s00454-007-1345-4.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail