Discrete Stratified Morse Theory: A User's Guide

Authors Kevin Knudson, Bei Wang

Thumbnail PDF


  • Filesize: 0.66 MB
  • 14 pages

Document Identifiers

Author Details

Kevin Knudson
Bei Wang

Cite AsGet BibTex

Kevin Knudson and Bei Wang. Discrete Stratified Morse Theory: A User's Guide. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 54:1-54:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Inspired by the works of Forman on discrete Morse theory, which is a combinatorial adaptation to cell complexes of classical Morse theory on manifolds, we introduce a discrete analogue of the stratified Morse theory of Goresky and MacPherson. We describe the basics of this theory and prove fundamental theorems relating the topology of a general simplicial complex with the critical simplices of a discrete stratified Morse function on the complex. We also provide an algorithm that constructs a discrete stratified Morse function out of an arbitrary function defined on a finite simplicial complex; this is different from simply constructing a discrete Morse function on such a complex. We borrow Forman's idea of a "user's guide," where we give simple examples to convey the utility of our theory.
  • Discrete Morse theory
  • stratified Morse theory
  • topological data analysis


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Madjid Allili, Tomasz Kaczynski, and Claudia Landi. Reducing complexes in multidimensional persistent homology theory. Journal of Symbolic Computation, 78:61-75, 2017. Google Scholar
  2. Paul Bendich and John Harer. Persistent intersection homology. Foundations of Computational Mathematics, 11(3):305-336, 2011. Google Scholar
  3. Bruno Benedetti. Smoothing discrete Morse theory. Annali della Scuola Normale Superiore di Pisa, 16(2):335-368, 2016. Google Scholar
  4. Ronald Brown. Topology and Groupoids. www.groupoids.org, 2006. Google Scholar
  5. Olaf Delgado-Friedrichs, Vanessa Robins, and Adrian Sheppard. Skeletonization and partitioning of digital images using discrete Morse theory. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3):654-666, 2015. Google Scholar
  6. Pawel Dlotko and Hubert Wagner. Computing homology and persistent homology using iterated Morse decomposition, 2012. URL: https://arxiv.org/abs/1210.1429.
  7. Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valerio Pascucci. Morse-Smale complexes for piece-wise linear 3-manifolds. ACM Symposium on Computational Geometry, pages 361-370, 2003. Google Scholar
  8. Herbert Edelsbrunner, John Harer, and Afra J. Zomorodian. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete &Computational Geometry, 30(87-107), 2003. Google Scholar
  9. Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66-104, 1990. Google Scholar
  10. Robin Forman. Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift, 228(4):629-681, 1998. Google Scholar
  11. Robin Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90-145, 1998. Google Scholar
  12. Robin Forman. Combinatorial differential topology and geometry. New Perspectives in Geometric Combinatorics, 38:177-206, 1999. Google Scholar
  13. Robin Forman. A user’s guide to discrete Morse theory. Séminaire Lotharingien de Combinatoire, 48, 2002. Google Scholar
  14. Greg Friedman. Stratified fibrations and the intersection homology of the regular neighborhoods of bottom strata. Topology and its Applications, 134(2):69-109, 2003. Google Scholar
  15. Mark Goresky and Robert MacPherson. Stratified Morse Theory. Springer-Verlag, 1988. Google Scholar
  16. David Günther, Jan Reininghaus, Hans-Peter Seidel, and Tino Weinkauf. Notes on the simplification of the Morse-Smale complex. In Peer-Timo Bremer, Ingrid Hotz, Valerio Pascucci, and Ronald Peikert, editors, Topological Methods in Data Analysis and Visualization III, pages 135-150. Springer International Publishing, 2014. Google Scholar
  17. Attila Gyulassy, Peer-Timo Bremer, Bernd Hamann, and Valerio Pascucci. A practical approach to Morse-Smale complex computation: Scalability and generality. IEEE Transactions on Visualization and Computer Graphics, 14(6):1619-1626, 2008. Google Scholar
  18. Henry King, Kevin Knudson, and Neža Mramor. Generating discrete Morse functions from point data. Experimental Mathematics, 14:435-444, 2005. Google Scholar
  19. Manfred Knebusch. Semialgebraic topology in the last ten years. In Michel Coste, Louis Mahe, and Marie-Francoise Roy, editors, Real Algebraic Geometry, 1991. Google Scholar
  20. Kevin Knudson and Bei Wang. Discrete stratified Morse theory: A user’s guide. 2018. URL: https://arxiv.org/abs/1801.03183.
  21. Konstantin Mischaikow and Vidit Nanda. Morse theory for filtrations and efficient computation of persistent homology. Discrete &Computational Geometry, 50(2):330-353, 2013. Google Scholar
  22. James R. Munkres. Elements of algebraic topology. Addison-Wesley, Redwood City, California, 1984. Google Scholar
  23. Jan Reininghaus. Computational Discrete Morse Theory. PhD thesis, Zuse Institut Berlin (ZIB), 2012. Google Scholar
  24. Jan Reininghaus, Jens Kasten, Tino Weinkauf, and Ingrid Hotz. Efficient computation of combinatorial feature flow fields. IEEE Transactions on Visualization and Computer Graphics, 18(9):1563-1573, 2011. Google Scholar
  25. Vanessa Robins, Peter John Wood, and Adrian P. Sheppard. Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1646-1658, 2011. Google Scholar
  26. Tammo tom Dieck. Algebraic Topology. European Mathematical Society, 2008. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail