We study k-page upward book embeddings (kUBEs) of st-graphs, that is, book embeddings of single-source single-sink directed acyclic graphs on k pages with the additional requirement that the vertices of the graph appear in a topological ordering along the spine of the book. We show that testing whether a graph admits a kUBE is NP-complete for k >= 3. A hardness result for this problem was previously known only for k = 6 [Heath and Pemmaraju, 1999]. Motivated by this negative result, we focus our attention on k=2. On the algorithmic side, we present polynomial-time algorithms for testing the existence of 2UBEs of planar st-graphs with branchwidth b and of plane st-graphs whose faces have a special structure. These algorithms run in O(f(b)* n+n^3) time and O(n) time, respectively, where f is a singly-exponential function on b. Moreover, on the combinatorial side, we present two notable families of plane st-graphs that always admit an embedding-preserving 2UBE.
@InProceedings{binucci_et_al:LIPIcs.SoCG.2019.13, author = {Binucci, Carla and Da Lozzo, Giordano and Di Giacomo, Emilio and Didimo, Walter and Mchedlidze, Tamara and Patrignani, Maurizio}, title = {{Upward Book Embeddings of st-Graphs}}, booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)}, pages = {13:1--13:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-104-7}, ISSN = {1868-8969}, year = {2019}, volume = {129}, editor = {Barequet, Gill and Wang, Yusu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.13}, URN = {urn:nbn:de:0030-drops-104170}, doi = {10.4230/LIPIcs.SoCG.2019.13}, annote = {Keywords: Upward Book Embeddings, st-Graphs, SPQR-trees, Branchwidth, Sphere-cut Decomposition} }
Feedback for Dagstuhl Publishing