We prove that it is #P-complete to count the triangulations of a (non-simple) polygon.
@InProceedings{eppstein:LIPIcs.SoCG.2019.33, author = {Eppstein, David}, title = {{Counting Polygon Triangulations is Hard}}, booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)}, pages = {33:1--33:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-104-7}, ISSN = {1868-8969}, year = {2019}, volume = {129}, editor = {Barequet, Gill and Wang, Yusu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.33}, URN = {urn:nbn:de:0030-drops-104371}, doi = {10.4230/LIPIcs.SoCG.2019.33}, annote = {Keywords: counting complexity, #P-completeness, triangulation, polygons} }
Feedback for Dagstuhl Publishing