3-Manifold Triangulations with Small Treewidth

Authors Kristóf Huszár , Jonathan Spreer

Thumbnail PDF


  • Filesize: 0.86 MB
  • 20 pages

Document Identifiers

Author Details

Kristóf Huszár
  • Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
Jonathan Spreer
  • Institut für Mathematik, Freie Universität Berlin, Arnimallee 2, 14195 Berlin, Germany


We thank the developers of the free software Regina [Burton, 2013; Burton et al., 1999] for creating a fantastic tool, and the anonymous reviewers for useful comments and suggestions regarding the exposition. KH thanks the people at the Discrete Geometry Group, Freie Universität Berlin, for their hospitality.

Cite AsGet BibTex

Kristóf Huszár and Jonathan Spreer. 3-Manifold Triangulations with Small Treewidth. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 44:1-44:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Motivated by fixed-parameter tractable (FPT) problems in computational topology, we consider the treewidth tw(M) of a compact, connected 3-manifold M, defined to be the minimum treewidth of the face pairing graph of any triangulation T of M. In this setting the relationship between the topology of a 3-manifold and its treewidth is of particular interest. First, as a corollary of work of Jaco and Rubinstein, we prove that for any closed, orientable 3-manifold M the treewidth tw(M) is at most 4g(M)-2, where g(M) denotes Heegaard genus of M. In combination with our earlier work with Wagner, this yields that for non-Haken manifolds the Heegaard genus and the treewidth are within a constant factor. Second, we characterize all 3-manifolds of treewidth one: These are precisely the lens spaces and a single other Seifert fibered space. Furthermore, we show that all remaining orientable Seifert fibered spaces over the 2-sphere or a non-orientable surface have treewidth two. In particular, for every spherical 3-manifold we exhibit a triangulation of treewidth at most two. Our results further validate the parameter of treewidth (and other related parameters such as cutwidth or congestion) to be useful for topological computing, and also shed more light on the scope of existing FPT-algorithms in the field.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Geometric topology
  • Theory of computation → Fixed parameter tractability
  • computational 3-manifold topology
  • fixed-parameter tractability
  • layered triangulations
  • structural graph theory
  • treewidth
  • cutwidth
  • Heegaard genus
  • lens spaces
  • Seifert fibered spaces


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. D. Bachman, R. Derby-Talbot, and E. Sedgwick. Computing Heegaard genus is NP-hard. In M. Loebl, J. Nešetřil, and R. Thomas, editors, A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek, pages 59-87. Springer, 2017. URL: http://dx.doi.org/10.1007/978-3-319-44479-6.
  2. M. C. Bell. Recognising mapping classes. PhD thesis, University of Warwick, June 2015. URL: https://wrap.warwick.ac.uk/77123.
  3. L. Bessières, G. Besson, S. Maillot, M. Boileau, and J. Porti. Geometrisation of 3-manifolds, volume 13 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2010. URL: http://dx.doi.org/10.4171/082.
  4. R. H. Bing. An alternative proof that 3-manifolds can be triangulated. Ann. of Math. (2), 69:37-65, 1959. URL: http://dx.doi.org/10.2307/1970092.
  5. H. L. Bodlaender. A Tourist Guide through Treewidth. Acta Cybern., 11(1-2):1-21, 1993. URL: https://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/Bodlaender_1993_ActaCybernetica.xml.
  6. H. L. Bodlaender. A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor. Comput. Sci., 209(1-2):1-45, 1998. URL: http://dx.doi.org/10.1016/S0304-3975(97)00228-4.
  7. H. L. Bodlaender. Discovering Treewidth. In SOFSEM 2005: Theory and Practice of Computer Science, 31st Conference on Current Trends in Theory and Practice of Computer Science, Liptovský Ján, Slovakia, January 22-28, 2005, Proceedings, pages 1-16, 2005. URL: http://dx.doi.org/10.1007/978-3-540-30577-4_1.
  8. H. L. Bodlaender and A. M. C. A. Koster. Combinatorial Optimization on Graphs of Bounded Treewidth. Comput. J., 51(3):255-269, 2008. URL: http://dx.doi.org/10.1093/comjnl/bxm037.
  9. M. Boileau and H. Zieschang. Heegaard genus of closed orientable Seifert 3-manifolds. Invent. Math., 76(3):455-468, 1984. URL: http://dx.doi.org/10.1007/BF01388469.
  10. B. A. Burton. Minimal triangulations and normal surfaces. PhD thesis, University of Melbourne, September 2003. URL: https://people.smp.uq.edu.au/BenjaminBurton/papers/2003-thesis.html.
  11. B. A. Burton. Computational topology with Regina: algorithms, heuristics and implementations. In Geometry and topology down under, volume 597 of Contemp. Math., pages 195-224. Amer. Math. Soc., Providence, RI, 2013. URL: http://dx.doi.org/10.1090/conm/597/11877.
  12. B. A. Burton, R. Budney, W. Pettersson, et al. Regina: Software for low-dimensional topology, 1999-2017. URL: https://regina-normal.github.io.
  13. B. A. Burton and R. G. Downey. Courcelle’s theorem for triangulations. J. Comb. Theory, Ser. A, 146:264-294, 2017. URL: http://dx.doi.org/10.1016/j.jcta.2016.10.001.
  14. B. A. Burton, T. Lewiner, J. Paixão, and J. Spreer. Parameterized Complexity of Discrete Morse Theory. ACM Trans. Math. Softw., 42(1):6:1-6:24, 2016. URL: http://dx.doi.org/10.1145/2738034.
  15. B. A. Burton, C. Maria, and J. Spreer. Algorithms and complexity for Turaev-Viro invariants. J. Appl. Comput. Topol., 2(1-2):33-53, 2018. URL: http://dx.doi.org/10.1007/s41468-018-0016-2.
  16. B. A. Burton and J. Spreer. The complexity of detecting taut angle structures on triangulations. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 168-183, 2013. URL: http://dx.doi.org/10.1137/1.9781611973105.13.
  17. A. de Mesmay, J. Purcell, S. Schleimer, and E. Sedgwick. On the tree-width of knot diagrams, 2018. 13 pages, 4 figures. URL: http://arxiv.org/abs/1809.02172.
  18. J. Díaz, J. Petit, and M. J. Serna. A survey of graph layout problems. ACM Comput. Surv., 34(3):313-356, 2002. URL: http://dx.doi.org/10.1145/568522.568523.
  19. R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin, fifth edition, 2017. URL: http://dx.doi.org/10.1007/978-3-662-53622-3.
  20. R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity. Texts in Computer Science. Springer, London, 2013. URL: http://dx.doi.org/10.1007/978-1-4471-5559-1.
  21. R. S. Hamilton. Three-manifolds with positive Ricci curvature. J. Differential Geom., 17(2):255-306, 1982. URL: http://dx.doi.org/10.4310/jdg/1214436922.
  22. A. Hatcher. Notes on Basic 3-Manifold Topology, 2007. URL: https://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf.
  23. J. Hempel. 3-manifolds. AMS Chelsea Publishing, Providence, RI, 2004. Reprint of the 1976 original. URL: http://dx.doi.org/10.1090/chel/349.
  24. K. Huszár and J. Spreer. 3-Manifold triangulations with small treewidth, 2018. 34 pages, 30 figures, 1 table. URL: http://arxiv.org/abs/1812.05528.
  25. K. Huszár, J. Spreer, and U. Wagner. On the treewidth of triangulated 3-manifolds, 2017. 25 pages, 6 figures, 1 table. An extended abstract of this paper appeared in the Proceedings of the 34th International Symposium on Computational Geometry (SoCG 2018), Budapest, June 11-14 2018. URL: http://arxiv.org/abs/1712.00434.
  26. W. Jaco. Lectures on three-manifold topology, volume 43 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, R.I., 1980. URL: http://dx.doi.org/10.1090/cbms/043.
  27. W. Jaco and J. H. Rubinstein. Layered-triangulations of 3-manifolds, 2006. 97 pages, 32 figures. URL: http://arxiv.org/abs/math/0603601.
  28. B. Kleiner and J. Lott. Notes on Perelman’s papers. Geom. Topol., 12(5):2587-2855, 2008. URL: http://dx.doi.org/10.2140/gt.2008.12.2587.
  29. L. Lovász. Graph minor theory. Bull. Amer. Math. Soc. (N.S.), 43(1):75-86, 2006. URL: http://dx.doi.org/10.1090/S0273-0979-05-01088-8.
  30. F. H. Lutz. Triangulated Manifolds with Few Vertices: Geometric 3-Manifolds, 2003. 48 pages, 18 figures. URL: http://arxiv.org/abs/math/0311116.
  31. C. Maria and J. Purcell. Treewidth, crushing, and hyperbolic volume, 2018. 20 pages, 12 figures. URL: http://arxiv.org/abs/1805.02357.
  32. C. Maria and J. Spreer. A polynomial time algorithm to compute quantum invariants of 3-manifolds with bounded first Betti number. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2721-2732, 2017. URL: http://dx.doi.org/10.1137/1.9781611974782.180.
  33. J. Milnor. Towards the Poincaré conjecture and the classification of 3-manifolds. Notices Amer. Math. Soc., 50(10):1226-1233, 2003. Google Scholar
  34. E. E. Moise. Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. of Math. (2), 56:96-114, 1952. URL: http://dx.doi.org/10.2307/1969769.
  35. J. M. Montesinos. Classical tessellations and three-manifolds. Universitext. Springer-Verlag, Berlin, 1987. URL: http://dx.doi.org/10.1007/978-3-642-61572-6.
  36. P. Orlik. Seifert manifolds, volume 291 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1972. URL: http://dx.doi.org/10.1007/BFb0060329.
  37. G. Perelman. The entropy formula for the Ricci flow and its geometric applications, 2002. 39 pages. URL: http://arxiv.org/abs/math/0211159.
  38. G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, 2003. 7 pages. URL: http://arxiv.org/abs/math/0307245.
  39. G. Perelman. Ricci flow with surgery on three-manifolds, 2003. 22 pages. URL: http://arxiv.org/abs/math/0303109.
  40. J. Porti. Geometrization of three manifolds and Perelman’s proof. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 102(1):101-125, 2008. URL: http://dx.doi.org/10.1007/BF03191814.
  41. N. Robertson and P. D. Seymour. Graph Minors. II. Algorithmic Aspects of Tree-Width. J. Algorithms, 7(3):309-322, 1986. URL: http://dx.doi.org/10.1016/0196-6774(86)90023-4.
  42. N. Saveliev. Lectures on the topology of 3-manifolds. De Gruyter Textbook. Walter de Gruyter &Co., Berlin, 2nd edition, 2012. URL: http://dx.doi.org/10.1515/9783110250367.
  43. M. Scharlemann. Heegaard splittings of compact 3-manifolds. In Handbook of geometric topology, pages 921-953. North-Holland, Amsterdam, 2002. URL: http://dx.doi.org/10.1016/B978-044482432-5/50019-6.
  44. J. Schultens. Introduction to 3-manifolds, volume 151 of Graduate Studies in Mathematics. Amer. Math. Soc., Providence, RI, 2014. URL: http://dx.doi.org/10.1090/gsm/151.
  45. P. Scott. The geometries of 3-manifolds. Bull. London Math. Soc., 15(5):401-487, 1983. URL: http://dx.doi.org/10.1112/blms/15.5.401.
  46. H. Seifert. Topologie Dreidimensionaler Gefaserter Räume. Acta Math., 60(1):147-238, 1933. URL: http://dx.doi.org/10.1007/BF02398271.
  47. W. P. Thurston. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.), 6(3):357-381, 1982. URL: http://dx.doi.org/10.1090/S0273-0979-1982-15003-0.
  48. W. P. Thurston. Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1997. Edited by S. Levy. URL: http://dx.doi.org/10.1515/9781400865321.
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail