Lexicographic Optimal Homologous Chains and Applications to Point Cloud Triangulations

Authors David Cohen-Steiner, André Lieutier, Julien Vuillamy

Thumbnail PDF


  • Filesize: 3.06 MB
  • 17 pages

Document Identifiers

Author Details

David Cohen-Steiner
  • Université Côte d'Azur, Sophia Antipolis, France
  • Inria Sophia Antipolis - Mediterranée, France
André Lieutier
  • Dassault Systèmes Provence, Aix-en-Provence, France
Julien Vuillamy
  • Université Côte d'Azur, Sophia Antipolis, France
  • Inria Sophia Antipolis - Mediterranée, France
  • Dassault Systèmes Provence, Aix-en-Provence, France


We would like to thank the anonymous reviewers for their helpful comments and suggestions on the submitted version of this paper.

Cite AsGet BibTex

David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Lexicographic Optimal Homologous Chains and Applications to Point Cloud Triangulations. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 32:1-32:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


This paper considers a particular case of the Optimal Homologous Chain Problem (OHCP) for integer modulo 2 coefficients, where optimality is meant as a minimal lexicographic order on chains induced by a total order on simplices. The matrix reduction algorithm used for persistent homology is used to derive polynomial algorithms solving this problem instance, whereas OHCP is NP-hard in the general case. The complexity is further improved to a quasilinear algorithm by leveraging a dual graph minimum cut formulation when the simplicial complex is a pseudomanifold. We then show how this particular instance of the problem is relevant, by providing an application in the context of point cloud triangulation.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • OHCP
  • simplicial homology
  • triangulation
  • Delaunay


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. Variational tetrahedral meshing. ACM Trans. Graph., 24(3):617-625, 2005. URL: https://doi.org/10.1145/1073204.1073238.
  2. Nina Amenta, Marshall W. Bern, and Manolis Kamvysselis. A new voronoi-based surface reconstruction algorithm. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, Orlando, FL, USA, July 19-24, 1998, pages 415-421, 1998. URL: https://doi.org/10.1145/280814.280947.
  3. Nina Amenta, Sunghee Choi, Tamal K. Dey, and N. Leekha. A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geometry Appl., 12(1-2):125-141, 2002. URL: https://doi.org/10.1142/S0218195902000773.
  4. Dominique Attali, André Lieutier, and David Salinas. Vietoris-rips complexes also provide topologically correct reconstructions of sampled shapes. Comput. Geom., 46(4):448-465, 2013. URL: https://doi.org/10.1016/j.comgeo.2012.02.009.
  5. Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat – persistent homology algorithms toolbox. Journal of Symbolic Computation, 78:76-90, 2017. Algorithms and Software for Computational Topology. URL: https://doi.org/10.1016/j.jsc.2016.03.008.
  6. Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape representation. ACM Trans. Graph., 3(4):266-286, 1984. URL: https://doi.org/10.1145/357346.357349.
  7. Jean-Daniel Boissonnat and Frédéric Cazals. Smooth surface reconstruction via natural neighbour interpolation of distance functions. In Proceedings of the Sixteenth Annual Symposium on Computational Geometry, Clear Water Bay, Hong Kong, China, June 12-14, 2000, pages 223-232, 2000. URL: https://doi.org/10.1145/336154.336208.
  8. J Frederico Carvalho, Mikael Vejdemo-Johansson, Danica Kragic, and Florian T Pokorny. An algorithm for calculating top-dimensional bounding chains. PeerJ Computer Science, 4:e153, 2018. Google Scholar
  9. Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and shortest homologous cycles. In Proceedings of the 25th ACM Symposium on Computational Geometry, Aarhus, Denmark, June 8-10, 2009, pages 377-385, 2009. URL: https://doi.org/10.1145/1542362.1542426.
  10. Erin Wolf Chambers and Mikael Vejdemo-Johansson. Computing minimum area homologies. In Computer graphics forum, volume 34, pages 13-21. Wiley Online Library, 2015. Google Scholar
  11. Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for compact sets in euclidean space. Discrete & Computational Geometry, 41(3):461-479, 2009. URL: https://doi.org/10.1007/s00454-009-9144-8.
  12. Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity. Journal of the ACM (JACM), 47(6):1028-1047, 2000. Google Scholar
  13. Chao Chen and Daniel Freedman. Quantifying homology classes. CoRR, abs/0802.2865, 2008. URL: http://arxiv.org/abs/0802.2865.
  14. Chao Chen and Daniel Freedman. Measuring and computing natural generators for homology groups. Comput. Geom., 43(2):169-181, 2010. URL: https://doi.org/10.1016/j.comgeo.2009.06.004.
  15. Chao Chen and Daniel Freedman. Hardness results for homology localization. Discrete & Computational Geometry, 45(3):425-448, 2011. URL: https://doi.org/10.1007/s00454-010-9322-8.
  16. Long Chen. Mesh smoothing schemes based on optimal delaunay triangulations. In Proceedings of the 13th International Meshing Roundtable, IMR 2004, Williamsburg, Virginia, USA, September 19-22, 2004, pages 109-120, 2004. URL: http://imr.sandia.gov/papers/abstracts/Ch317.html.
  17. Long Chen and Michael Holst. Efficient mesh optimization schemes based on optimal delaunay triangulations. Computer Methods in Applied Mechanics and Engineering, 200(9):967-984, 2011. URL: https://doi.org/10.1016/j.cma.2010.11.007.
  18. David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Lexicographic optimal chains and manifold triangulations. Research Report HAL: hal-02391190, 2019. Google Scholar
  19. David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Lexicographic optimal homologous chains and applications to point cloud triangulations. Preprint HAL: hal-02391240, 2019. Google Scholar
  20. David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Regular triangulations as lexicographic optimal chains. Preprint HAL: hal-02391285, 2019. Google Scholar
  21. Tamal K. Dey and Samrat Goswami. Tight cocone: A water-tight surface reconstructor. J. Comput. Inf. Sci. Eng., 3(4):302-307, 2003. URL: https://doi.org/https://doi.org/10.1115/1.1633278.
  22. Tamal K. Dey, Anil N. Hirani, and Bala Krishnamoorthy. Optimal homologous cycles, total unimodularity, and linear programming. SIAM J. Comput., 40(4):1026-1044, 2011. URL: https://doi.org/10.1137/100800245.
  23. Tamal K. Dey, Tao Hou, and Sayan Mandal. Computing minimal persistent cycles: Polynomial and hard cases. CoRR, abs/1907.04889, 2019. URL: http://arxiv.org/abs/1907.04889.
  24. Tamal K. Dey, Jian Sun, and Yusu Wang. Approximating loops in a shortest homology basis from point data. In David G. Kirkpatrick and Joseph S. B. Mitchell, editors, Proceedings of the 26th ACM Symposium on Computational Geometry, Snowbird, Utah, USA, June 13-16, 2010, pages 166-175. ACM, 2010. URL: https://doi.org/10.1145/1810959.1810989.
  25. Herbert Edelsbrunner. Surface Reconstruction by Wrapping Finite Sets in Space, pages 379-404. Springer Berlin Heidelberg, 2003. URL: https://doi.org/10.1007/978-3-642-55566-4_17.
  26. Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. American Mathematical Society, 2010. URL: http://www.ams.org/bookstore-getitem/item=MBK-69.
  27. Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM, 19(2):248-264, 1972. URL: https://doi.org/10.1145/321694.321699.
  28. Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 1038-1046, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070581.
  29. Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm. Commun. ACM, 7(5):301-303, 1964. URL: https://doi.org/10.1145/364099.364331.
  30. Clément Jamin, Sylvain Pion, and Monique Teillaud. 3D triangulations. In CGAL User and Reference Manual. CGAL Editorial Board, 5.0 edition, 2019. URL: https://doc.cgal.org/5.0/Manual/packages.html#PkgTriangulation3.
  31. Michael M. Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Trans. Graph., 32(3):29:1-29:13, 2013. URL: https://doi.org/10.1145/2487228.2487237.
  32. Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven. Robust and efficient surface reconstruction from range data. Comput. Graph. Forum, 28(8):2275-2290, 2009. URL: https://doi.org/10.1111/j.1467-8659.2009.01530.x.
  33. Sylvain Lefebvre and Michela Spagnuolo, editors. Eurographics 2014 - State of the Art Reports, Strasbourg, France, April 7-11, 2014. Eurographics Association, 2014. URL: https://diglib.eg.org/handle/10.2312/7707.
  34. Yangyan Li, Xiaokun Wu, Yiorgos Chrysanthou, Andrei Sharf, Daniel Cohen-Or, and Niloy J. Mitra. Globfit: consistently fitting primitives by discovering global relations. ACM Trans. Graph., 30(4):52, 2011. URL: https://doi.org/10.1145/2010324.1964947.
  35. James B. Orlin. Max flows in o(nm) time, or better. In Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 765-774, 2013. URL: https://doi.org/10.1145/2488608.2488705.
  36. John Matthew Sullivan. A Crystalline Approximation Theorem for Hypersurfaces. PhD thesis, Princeton Univ., October 1990. URL: http://torus.math.uiuc.edu/jms/Papers/thesis/.
  37. Robert Endre Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms. J. ACM, 31(2):245-281, 1984. URL: https://doi.org/10.1145/62.2160.
  38. Pengxiang Wu, Chao Chen, Yusu Wang, Shaoting Zhang, Changhe Yuan, Zhen Qian, Dimitris Metaxas, and Leon Axel. Optimal topological cycles and their application in cardiac trabeculae restoration. In International Conference on Information Processing in Medical Imaging, pages 80-92. Springer, 2017. Google Scholar