Document Open Access Logo

Short Topological Decompositions of Non-Orientable Surfaces

Authors Niloufar Fuladi, Alfredo Hubard, Arnaud de Mesmay



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2022.41.pdf
  • Filesize: 4.75 MB
  • 16 pages

Document Identifiers

Author Details

Niloufar Fuladi
  • LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France
Alfredo Hubard
  • LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France
Arnaud de Mesmay
  • LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

Acknowledgements

We are grateful to Marcus Schaefer and Daniel Štefankovič for providing us the full version of [{Marcus} {Schaefer} and {Daniel} {Štefankovič}, 2022], to Francis Lazarus for insightful discussions, and to the anonymous reviewers for very helpful comments.

Cite AsGet BibTex

Niloufar Fuladi, Alfredo Hubard, and Arnaud de Mesmay. Short Topological Decompositions of Non-Orientable Surfaces. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 41:1-41:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.SoCG.2022.41

Abstract

We investigate short topological decompositions of non-orientable surfaces and provide algorithms to compute them. Our main result is a polynomial-time algorithm that for any graph embedded in a non-orientable surface computes a canonical non-orientable system of loops so that any loop from the canonical system intersects any edge of the graph in at most 30 points. The existence of such short canonical systems of loops was well known in the orientable case and an open problem in the non-orientable case. Our proof techniques combine recent work of Schaefer-Štefankovič with ideas coming from computational biology, specifically from the signed reversal distance algorithm of Hannenhalli-Pevzner. This result confirms a special case of a conjecture of Negami on the joint crossing number of two embeddable graphs. We also provide a correction for an argument of Negami bounding the joint crossing number of two non-orientable graph embeddings.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Geometric topology
  • Mathematics of computing → Graphs and surfaces
Keywords
  • Computational topology
  • embedded graph
  • non-orientable surface
  • joint crossing number
  • canonical system of loop
  • surface decomposition

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dan Archdeacon and C Paul Bonnington. Two maps on one surface. Journal of Graph Theory, 36(4):198-216, 2001. Google Scholar
  2. Anne Bergeron. A very elementary presentation of the Hannenhalli-Pevzner theory. In Annual Symposium on Combinatorial Pattern Matching, pages 106-117. Springer, 2001. Google Scholar
  3. Andrei C Bura, Ricky XF Chen, and Christian M Reidys. On a lower bound for sorting signed permutations by reversals. arXiv preprint, 2016. URL: http://arxiv.org/abs/1602.00778.
  4. Éric Colin de Verdière. Topological algorithms for graphs on surfaces. Habilitation thesis, http://www.di.ens.fr/~colin/, 2012.
  5. Éric Colin de Verdière. Computational topology of graphs on surfaces. In Jacob E. Goodman, Joseph O'Rourke, and Csaba Toth, editors, Handbook of Discrete and Computational Geometry, chapter 23, pages 605-636. CRC Press LLC, third edition, 2018. Google Scholar
  6. Éric Colin De Verdière and Jeff Erickson. Tightening nonsimple paths and cycles on surfaces. SIAM Journal on Computing, 39(8):3784-3813, 2010. Google Scholar
  7. Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk. Discrete & Computational Geometry, 31(1):37-59, 2004. Google Scholar
  8. Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In SODA, volume 5, pages 1038-1046, 2005. Google Scholar
  9. Niloufar Fuladi, Alfredo Hubard, and Arnaud de Mesmay. Short topological decompositions of non-orientable surfaces, 2022. URL: http://arxiv.org/abs/2203.06659.
  10. Jim Geelen, Tony Huynh, and R Bruce Richter. Explicit bounds for graph minors. Journal of Combinatorial Theory, Series B, 132:80-106, 2018. Google Scholar
  11. Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society, 45(1):61-75, 2008. Google Scholar
  12. Sridhar Hannenhalli and Pavel A Pevzner. Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. Journal of the ACM (JACM), 46(1):1-27, 1999. Google Scholar
  13. Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. Google Scholar
  14. Brian Hayes. Computing science: Sorting out the genome. American Scientist, 95(5):386-391, 2007. Google Scholar
  15. Petr Hliněnỳ and Gelasio Salazar. On hardness of the joint crossing number. In International Symposium on Algorithms and Computation, pages 603-613. Springer, 2015. Google Scholar
  16. Fenix WD Huang and Christian M Reidys. A topological framework for signed permutations. Discrete Mathematics, 340(9):2161-2182, 2017. Google Scholar
  17. Francis Lazarus. Combinatorial graphs and surfaces from the computational and topological viewpoint followed by some notes on the isometric embedding of the square flat torus. Mémoire d’HDR, 2014. Available at URL: http://www.gipsa-lab.grenoble-inp. fr/~francis.lazarus/Documents/hdr-Lazarus.pdf.
  18. Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Verroust. Computing a canonical polygonal schema of an orientable triangulated surface. In Proceedings of the seventeenth annual symposium on Computational geometry, pages 80-89, 2001. Google Scholar
  19. Jiří Matoušek, Eric Sedgwick, Martin Tancer, and Uli Wagner. Untangling two systems of noncrossing curves. In International Symposium on Graph Drawing, pages 472-483. Springer, 2013. Google Scholar
  20. Bojan Mohar. The genus crossing number. ARS Mathematica Contemporanea, 2(2):157-162, 2009. Google Scholar
  21. Bojan Mohar and Carsten Thomassen. Graphs on surfaces, volume 10. JHU press, 2001. Google Scholar
  22. Seiya Negami. Crossing numbers of graph embedding pairs on closed surfaces. Journal of Graph Theory, 36(1):8-23, 2001. Google Scholar
  23. R Bruce Richter and Gelasio Salazar. Two maps with large representativity on one surface. Journal of Graph Theory, 50(3):234-245, 2005. Google Scholar
  24. Marcus Schaefer and Daniel Štefankovič. Block additivity of ℤ₂-embeddings. In International Symposium on Graph Drawing, pages 185-195. Springer, 2013. Google Scholar
  25. Marcus Schaefer and Daniel Štefankovič. The degenerate crossing number and higher-genus embeddings. Journal of Graph Algorithms and Applications, 26(1):35-58, 2022. URL: https://doi.org/10.7155/jgaa.00580.
  26. James P Sethna. Order parameters, broken symmetry, and topology. In 1991 Lectures in Complex Systems. Addison-Wesley, 1992. Google Scholar
  27. Alla Sheffer, K Hormann, B Levy, M Desbrun, K Zhou, E Praun, and H Hoppe. Mesh parameterization: Theory and practice. ACM SIGGRAPPH, course notes, 10(1281500.1281510), 2007. Google Scholar
  28. John Stillwell. Classical topology and combinatorial group theory, volume 72. Springer Science & Business Media, 1993. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail