Geometric Embeddability of Complexes Is ∃ℝ-Complete

Authors Mikkel Abrahamsen , Linda Kleist , Tillmann Miltzow



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2023.1.pdf
  • Filesize: 1.68 MB
  • 19 pages

Document Identifiers

Author Details

Mikkel Abrahamsen
  • University of Copenhagen, Denmark
Linda Kleist
  • Technische Universität Braunschweig, Germany
Tillmann Miltzow
  • Utrecht University, The Netherlands

Acknowledgements

We thank Arkadiy Skopenkov for his kind and swift help with acquiring literature and Martin Tancer for pointing out a mistake in a previous version of this manuscript.

Cite AsGet BibTex

Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Geometric Embeddability of Complexes Is ∃ℝ-Complete. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 1:1-1:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.SoCG.2023.1

Abstract

We show that the decision problem of determining whether a given (abstract simplicial) k-complex has a geometric embedding in ℝ^d is complete for the Existential Theory of the Reals for all d ≥ 3 and k ∈ {d-1,d}. Consequently, the problem is polynomial time equivalent to determining whether a polynomial equation system has a real solution and other important problems from various fields related to packing, Nash equilibria, minimum convex covers, the Art Gallery Problem, continuous constraint satisfaction problems, and training neural networks. Moreover, this implies NP-hardness and constitutes the first hardness result for the algorithmic problem of geometric embedding (abstract simplicial) complexes. This complements recent breakthroughs for the computational complexity of piece-wise linear embeddability.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • simplicial complex
  • geometric embedding
  • linear embedding
  • hypergraph
  • recognition
  • existential theory of the reals

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Zachary Abel, Erik Demaine, Martin Demaine, Sarah Eisenstat, Jayson Lynch, and Tao Schardl. Who needs crossings? Hardness of plane graph rigidity. In International Symposium on Computational Geometry (SoCG), pages 3:1-3:15, 2016. URL: https://doi.org/10.4230/LIPIcs.SoCG.2016.3.
  2. Mikkel Abrahamsen. Covering polygons is even harder. In Foundations on Computer Science (FOCS), 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00045.
  3. Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is ∃ ℝ-complete. In Symposium on Theory of Computing (STOC), pages 65-73, 2018. URL: https://doi.org/10.1145/3188745.3188868.
  4. Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Training neural networks is ∃ℝ-complete. In Conference on Neural Information Processing Systems (NeurIPS), volume 34, pages 18293-18306, 2021. URL: https://proceedings.neurips.cc/paper/2021/file/9813b270ed0288e7c0388f0fd4ec68f5-Paper.pdf.
  5. Mikkel Abrahamsen, Tillmann Miltzow, and Nadja Seiferth. Framework for ER-completeness of two-dimensional packing problems. In Foundations on Computer Science (FOCS), pages 1014-1021. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00098.
  6. J. L. Ramírez Alfonsín. Knots and links in spatial graphs: a survey. Discrete mathematics, 302(1-3):225-242, 2005. URL: https://doi.org/10.1016/j.disc.2004.07.035.
  7. Vittorio Bilò and Marios Mavronicolas. A catalog of EXISTS-R-complete decision problems about Nash equilibria in multi-player games. In Symposium on Theoretical Aspects of Computer Science (STACS), 2016. URL: https://doi.org/10.4230/LIPIcs.STACS.2016.17.
  8. R. H. Bing. An alternative proof that 3-manifolds can be triangulated. Annals of Mathematics, 69(1):37-65, 1959. URL: https://doi.org/10.2307/1970092.
  9. Jürgen Bokowski and A. Guedes de Oliveira. On the generation of oriented matroids. Discrete & Computational Geometry (DCG), 24(2):197-208, 2000. URL: https://doi.org/10.1007/s004540010027.
  10. Ulrich Brehm. A nonpolyhedral triangulated Möbius strip. Proceedings of the American Mathematical Society, 89(3):519-522, 1983. URL: https://doi.org/10.1090/S0002-9939-1983-0715878-1.
  11. Ulrich Brehm and Karanbir S. Sarkaria. Linear vs. piecewise-linear embeddability of simplicial complexes. Technical Report MPI Bonn, pages 1-15, 1992. available at http://kssarkaria.org/docs/Linear%20vs.%20piecewise-linear%20embeddability%20of%20simplicial%20complexes.pdf .
  12. J. L. Bryant. Approximating embeddings of polyhedra in codimension three. Transactions of the American Mathematical Society, 170:85-95, 1972. URL: https://doi.org/10.1090/S0002-9947-1972-0307245-7.
  13. Martin Čadek, Marek Krčál, Jiří Matoušek, Francis Sergeraert, Lukáš Vokřínek, and Uli Wagner. Computing all maps into a sphere. Journal of the ACM (JACM), 61(3):1-44, 2014. URL: https://doi.org/10.1145/2597629.
  14. Martin Čadek, Marek Krčál, Jiří Matoušek, Lukáš Vokřínek, and Uli Wagner. Extendability of continuous maps is undecidable. Discrete & Computational Geometry (DCG), 51(1):24-66, 2014. URL: https://doi.org/10.1007/s00454-013-9551-8.
  15. Martin Čadek, Marek Krčál, Jiří Matoušek, Lukáš Vokřínek, and Uli Wagner. Time computation of homotopy groups and Postnikov systems in fixed dimension. SIAM Journal of Computing (SICOMP), 43(5):1728-1780, 2014. URL: https://doi.org/10.1137/120899029.
  16. Martin Čadek, Marek Krčál, and Lukáš Vokřínek. Algorithmic solvability of the lifting-extension problem. Discrete & Computational Geometry (DCG), 57(4):915-965, 2017. URL: https://doi.org/10.1007/s00454-016-9855-6.
  17. John Canny. Some algebraic and geometric computations in PSPACE. In Symposium on Theory of Computing (STOC), pages 460-467. ACM, 1988. URL: https://doi.org/10.1145/62212.62257.
  18. Jean Cardinal. Computational geometry column 62. SIGACT News, 46(4):69-78, 2015. URL: https://doi.org/10.1145/2852040.2852053.
  19. Jean Cardinal and Udo Hoffmann. Recognition and complexity of point visibility graphs. Discrete & Computational Geometry (DCG), 57(1):164-178, 2017. URL: https://doi.org/10.1007/s00454-016-9831-1.
  20. Johannes Carmesin. Embedding simply connected 2-complexes in 3-space - I. A Kuratowski-type characterisation. arXiv preprint, 2019. URL: https://arxiv.org/abs/1709.04642.
  21. Jean Dieudonné. A history of algebraic and differential topology, 1900-1960. Springer, 2009. Google Scholar
  22. Michael Gene Dobbins, Andreas Holmsen, and Tillmann Miltzow. A universality theorem for nested polytopes. arXiv preprint, 2019. URL: https://arxiv.org/abs/1908.02213.
  23. Jeff Erickson, Ivor van der Hoog, and Tillmann Miltzow. Smoothing the gap between NP and ER. In Foundations on Computer Science (FOCS), pages 1022-1033. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00099.
  24. Marek Filakovský, Uli Wagner, and Stephan Zhechev. Embeddability of simplicial complexes is undecidable. In Symposium on Discrete Algorithms (SODA), pages 767-785, 2020. URL: https://doi.org/10.1137/1.9781611975994.47.
  25. Antonio Flores. Über n-dimensionale Komplexe, die im R_2n+1 absolut selbstverschlungen sind. In Ergeb. Math. Kolloq, volume 34, pages 4-6, 1933. Google Scholar
  26. Michael H. Freedman, Vyacheslav S. Krushkal, and Peter Teichner. Van Kampen’s embedding obstruction is incomplete for 2-complexes in ℝ⁴. Mathematical Research Letters, 1(2):167-176, 1994. Google Scholar
  27. Florian Frick, Mirabel Hu, Nick Scheel, and Steven Simon. Embedding dimensions of simplicial complexes on few vertices. arXiv preprint, 2021. URL: https://arxiv.org/abs/2109.04855.
  28. Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. ∃ℝ-completeness for decision versions of multi-player (symmetric) Nash equilibria. ACM Transactions on Economics and Computation, 6(1):1:1-1:23, 2018. URL: https://doi.org/10.1145/3175494.
  29. Jonathan L. Gross and Ronald H. Rosen. A linear time planarity algorithm for 2-complexes. Journal of the ACM (JACM), 26(4):611-617, 1979. URL: https://doi.org/10.1145/322154.322156.
  30. Branko Grünbaum. Imbeddings of simplicial complexes. Commentarii Mathematici Helvetici, 44(1):502-513, 1969. URL: https://doi.org/10.5169/seals-33795.
  31. Branko Grünbaum. Polytopes, graphs, and complexes. Bulletin of the American Mathematical Society, 76(6):1131-1201, 1970. URL: https://doi.org/10.1090/S0002-9904-1970-12601-5.
  32. Rudolf Halin and Heinz Jung. Charakterisierung der Komplexe der Ebene und der 2-Sphäre. Archiv der Mathematik, 15(1):466-469, 1964. Google Scholar
  33. John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM (JACM), 21(4):549-568, 1974. URL: https://doi.org/10.1145/321850.321852.
  34. Wilfried Imrich. On whitney’s theorem on the unique embeddability of 3-connected planar graphs. In Recent advances in graph theory: Proceedings of the Symposium held in Prague, volume 1974, pages 303-306, 1975. Google Scholar
  35. Fáry István. On straight-line representation of planar graphs. Acta scientiarum mathematicarum, 11(229-233):2, 1948. Google Scholar
  36. Marek Krčál, Jiří Matoušek, and Francis Sergeraert. Polynomial-time homology for simplicial Eilenberg-MacLane spaces. Foundations of Computational Mathematics (FoCM), 13(6):935-963, 2013. URL: https://doi.org/10.1007/s10208-013-9159-7.
  37. Anna Lubiw, Tillmann Miltzow, and Debajyoti Mondal. The complexity of drawing a graph in a polygonal region. In International Symposium on Graph Drawing and Network Visualization (GD), pages 387-401. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-04414-5_28.
  38. Jiří Matoušek. Intersection graphs of segments and ∃ ℝ. arXiv preprint, 2014. URL: https://arxiv.org/abs/1406.2636.
  39. Jiří Matoušek, Eric Sedgwick, Martin Tancer, and Uli Wagner. Embeddability in the 3-sphere is decidable. Journal of the ACM (JACM), 65(1):1-49, 2018. URL: https://doi.org/10.1145/2582112.2582137.
  40. Jiří Matoušek, Martin Tancer, and Uli Wagner. Hardness of embedding simplicial complexes in ℝ^d. Journal of the European Mathematical Society (JEMS), 13(2):259-295, 2011. URL: https://doi.org/10.4171/JEMS/252.
  41. Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. Journal of Combinatorial Theory, Series B, 103(1):114-143, 2013. URL: https://doi.org/10.1016/j.jctb.2012.09.004.
  42. Karl Menger. Dimensionstheorie. Vieweg+Teubner Verlag, 1 edition, 1928. URL: https://doi.org/10.1007/978-3-663-16056-4.
  43. Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick, and Martin Tancer. Embeddability in ℝ³ is NP-hard. Journal of the ACM (JACM), 67(4):20:1-20:29, 2020. URL: https://doi.org/10.1145/3396593.
  44. Tillmann Miltzow and Reinier F. Schmiermann. On classifying continuous constraint satisfaction problems. In Foundations of Computer Science (FOCS 2021), pages 781-791. IEEE, 2022. URL: https://doi.org/10.1109/FOCS52979.2021.00081.
  45. Nicolai Mnëv. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In Oleg Y. Viro, editor, Topology and geometry - Rohlin seminar, pages 527-543. Springer, 1988. URL: https://doi.org/10.1007/BFb0082792.
  46. Isabella Novik. A note on geometric embeddings of simplicial complexes in a euclidean space. Discrete & Computational Geometry (DCG), 23(2):293-302, 2000. URL: https://doi.org/10.1007/s004549910019.
  47. Patrice Ossona deMendez. Realization of posets. Journal of Graph Algorithms and Applications (JGAA), 6(1):149-153, 2002. URL: https://doi.org/10.7155/jgaa.00048.
  48. Christos Papakyriakopoulos. A new proof of the invariance of the homology groups of a complex. Bulletin of the Greek Mathematical Society, 22:1-154, 1943. Google Scholar
  49. S. Parsa and A. Skopenkov. On embeddability of joins and their 'factors'. arXiv preprint, 2020. URL: https://arxiv.org/abs/2003.12285.
  50. Jürgen Richter-Gebert. Realization spaces of polytopes, volume 1643 of LNM. Springer, 1996. URL: https://doi.org/10.1007/BFb0093761.
  51. Jürgen Richter-Gebert and Günter M. Ziegler. Realization spaces of 4-polytopes are universal. Bulletin of the American Mathematical Society, 32(4):403-412, 1995. URL: https://doi.org/10.1090/S0273-0979-1995-00604-X.
  52. Marcus Schaefer. Complexity of some geometric and topological problems. In International Symposium on Graph Drawing (GD), LNCS, pages 334-344. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-11805-0_32.
  53. Egon Schulte and Ulrich Brehm. Polyhedral maps. In Csaba D. Toth, Jacob E. Goodman, and Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry, Third Edition, pages 533-548. Chapman and Hall/CRC, 2017. URL: https://doi.org/10.1201/9781315119601.
  54. Arnold Shapiro. Obstructions to the imbedding of a complex in a Euclidean space.: I. the first obstruction. Annals of Mathematics, pages 256-269, 1957. URL: https://doi.org/10.2307/1969998.
  55. Yaroslav Shitov. A universality theorem for nonnegative matrix factorizations. arXiv preprint, 2016. URL: https://arxiv.org/abs/1606.09068.
  56. Peter Shor. Stretchability of pseudolines is NP-hard. In Peter Gritzmann and Bernd Sturmfels, editors, Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, DIMACS - Series in Discrete Mathematics and Theoretical Computer Science, pages 531-554. AMS, 1991. Google Scholar
  57. Arkadiy Skopenkov. Realizability of hypergraphs and ramsey link theory. arXiv preprint, 2014. URL: https://arxiv.org/abs/1402.0658.
  58. Arkadiy Skopenkov. Extendability of simplicial maps is undecidable. arXiv preprint, 2020. URL: https://arxiv.org/abs/2008.00492.
  59. Arkadiy Skopenkov. Invariants of graph drawings in the plane. Arnold Mathematical Journal, 6:21-55, 2020. URL: https://doi.org/10.1007/s40598-019-00128-5.
  60. Arkadiy Skopenkov and Martin Tancer. Hardness of almost embedding simplicial complexes in ℝ^d. Discrete & Computational Geometry (DCG), 61(2):452-463, 2019. URL: https://doi.org/10.1007/s00454-018-0013-1.
  61. Mikhail Skopenkov. Embedding products of graphs into euclidean spaces. arXiv preprint, 2016. URL: https://arxiv.org/abs/0808.1199.
  62. Ernst Steinitz. Polyeder und Raumeinteilungen. In Encyclopädie der mathematischen Wissenschaften, volume 3-1-2 (Geometrie), chapter 12, pages 1-139. B. G. Teubner, Leipzig, 1922. Google Scholar
  63. Dagmar Timmreck. Necessary conditions for geometric realizability of simplicial complexes. In A.I. Bobenko, P. Schröder, J.M. Sullivan, and G.M. Ziegler, editors, Discrete Differential Geometry, volume 38 of Oberwolfach Seminars, pages 215-233. Birkhäuser Basel, 2008. URL: https://doi.org/10.1007/978-3-7643-8621-4_11.
  64. Dagmar Ingrid Timmreck. Realization Problems for Point Configurations and Polyhedral Surfaces. PhD thesis, Freie Universität Berlin, 2015. URL: https://doi.org/10.17169/refubium-14465.
  65. Brian R. Ummel. The product of nonplanar complexes does not imbed in 4-space. Transactions of the American Mathematical Society, 242:319-328, 1978. URL: https://doi.org/10.2307/1997741.
  66. Egbert R. Van Kampen. Komplexe in euklidischen Räumen. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, volume 9, pages 72-78. Springer, 1933. Google Scholar
  67. Wen-tsün Wu. A theory of imbedding, immersion, and isotopy of polytopes in a Euclidean space. Science Press, 1965. Google Scholar