Dynamic Convex Hulls for Simple Paths

Authors Bruce Brewer , Gerth Stølting Brodal , Haitao Wang



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.24.pdf
  • Filesize: 0.92 MB
  • 15 pages

Document Identifiers

Author Details

Bruce Brewer
  • Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA
Gerth Stølting Brodal
  • Department of Computer Science, Aarhus University, Denmark
Haitao Wang
  • Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Cite AsGet BibTex

Bruce Brewer, Gerth Stølting Brodal, and Haitao Wang. Dynamic Convex Hulls for Simple Paths. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.24

Abstract

We consider two restricted cases of the planar dynamic convex hull problem with point insertions and deletions. We assume all updates are performed on a deque (double-ended queue) of points. The first case considers the monotonic path case, where all points are sorted in a given direction, say horizontally left-to-right, and only the leftmost and rightmost points can be inserted and deleted. The second case, which is more general, assumes that the points in the deque constitute a simple path. For both cases, we present solutions supporting deque insertions and deletions in worst-case constant time and standard queries on the convex hull of the points in O(log n) time, where n is the number of points in the current point set. The convex hull of the current point set can be reported in O(h+log n) time, where h is the number of edges of the convex hull. For the 1-sided monotone path case, where updates are only allowed on one side, the reporting time can be reduced to O(h), and queries on the convex hull are supported in O(log h) time. All our time bounds are worst case. In addition, we prove lower bounds that match these time bounds, and thus our results are optimal.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Dynamic convex hull
  • convex hull queries
  • simple paths
  • path updates
  • deque

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Georgii Maksimovich Adel’son-Velskii and Evgenii Mikhailovich Landis. An algorithm for organization of information. Doklady Akademii Nauk, 146(2):263-266, 1962. Google Scholar
  2. A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters, 9:216-219, 1979. URL: https://doi.org/10.1016/0020-0190(79)90072-3.
  3. Gerth Stølting Brodal. Finger search trees. In Dinesh P. Mehta and Sartaj Sahni, editors, Handbook of Data Structures and Applications. Chapman and Hall/CRC, 2004. URL: https://www.cs.au.dk/~gerth/papers/finger05.pdf.
  4. Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull with optimal query time and O(log n ⋅ log log n) update time. In Proceedings of the 7th Scandinavian Workshop on Algorithm Theory (SWAT), pages 57-70, 2000. URL: https://doi.org/10.1007/3-540-44985-X_7.
  5. Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science (FOCS), pages 617-626, 2002. URL: https://doi.org/10.1109/SFCS.2002.1181985.
  6. Norbert Bus and Lilian Buzer. Dynamic convex hull for simple polygonal chains in constant amortized time per update. In Proceedings of the 31st European Workshop on Computational Geometry (EuroCG), 2015. URL: https: //perso.esiee.fr/~busn/publications/2015_eurocg_dynamicConvexHull/eurocg2015_dynamicHull.pdf.
  7. Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete and Computational Geometry, 16:361-368, 1996. URL: https://doi.org/10.1007/BF02712873.
  8. Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmaic amortized time. Journal of the ACM, 48:1-12, 2001. URL: https://doi.org/10.1145/363647.363652.
  9. Timothy M. Chan. Three problems about dynamic convex hulls. Int. J. Comput. Geom. Appl., 22(4):341-364, 2012. URL: https://doi.org/10.1142/S0218195912600096.
  10. Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: II. Applications. Algorithmica, 1:163-191, 1986. URL: https://doi.org/10.1007/BF01840441.
  11. David Dobkin, Leonidas Guibas, John Hershberger, and Jack Snoeyink. An efficient algorithm for finding the CSG representation of a simple polygon. Algorithmica, 10:1-23, 1993. URL: https://doi.org/10.1007/BF01908629.
  12. James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data structures persistent. Journal of Computer and System Sciences, 38:86-124, 1989. URL: https://doi.org/10.1016/0022-0000(89)90034-2.
  13. Joseph Friedman, John Hershberger, and Jack Snoeyink. Efficiently planning compliant motion in the plane. SIAM Journal on Computing, 25:562-599, 1996. URL: https://doi.org/10.1145/73833.73854.
  14. Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters, 1:132-133, 1972. URL: https://doi.org/10.1016/0020-0190(72)90045-2.
  15. Ronald L. Graham and F. Frances Yao. Finding the convex hull of a simple polygon. Journal of Algorithms, 4:324-331, 1983. URL: https://doi.org/10.1016/0196-6774(83)90013-5.
  16. Leonidas Guibas, John Hershberger, and Jack Snoeyink. Compact interval trees: A data structure for convex hulls. International Journal of Computational Geometry and Applications, 1:1-22, 1991. URL: https://doi.org/10.1142/S0218195991000025.
  17. Leonidas J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A new representation for linear lists. In Proceedings of the 9th Annual ACM Symposium on Theory of Computing (STOC), pages 49-60, 1977. URL: https://doi.org/10.1145/800105.803395.
  18. John Hershberger and Jack Snoeyink. Cartographic line simplification and polygon CSG formula in O(n log^* n) time. Computational Geometry: Theory and Applications, 11:175-185, 1998. URL: https://doi.org/10.1016/S0925-7721(98)00027-3.
  19. John Hershberger and Subhash Suri. Offline maintenance of planar configurations. In Proceedings of the 2nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 32-41, 1991. URL: https://doi.org/10.5555/127787.127801.
  20. John Hershberger and Subhash Suri. Applications of a semi-dynamic convex hull algorithm. BIT, 32:249-267, 1992. URL: https://doi.org/10.1007/BF01994880.
  21. Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation via recursive slow-down. In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing (STOC), pages 93-102, 1995. URL: https://doi.org/10.1145/225058.225090.
  22. Haim Kaplan, Robert E. Tarjan, and Kostas Tsioutsiouliklis. Faster kinetic heaps and their use in broadcast scheduling. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 836-844, 2001. URL: https://doi.org/10.5555/365411.365793.
  23. David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm? SIAM Journal on Computing, 15:287-299, 1986. URL: https://doi.org/10.1137/0215021.
  24. Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition. Addison-Wesley, 1973. Google Scholar
  25. Avraham A. Melkman. On-line construction of the convex hull of a simple polyline. Information Processing Letters, 25(1):11-12, 1987. URL: https://doi.org/10.1016/0020-0190(87)90086-X.
  26. Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in Computer Science. Springer, 1983. URL: https://doi.org/10.1007/BFB0014927.
  27. Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. Journal of Computer and System Sciences, 23:166-204, 1981. URL: https://doi.org/10.1016/0022-0000(81)90012-X.
  28. Franco P. Preparata. An optimal real-time algorithm for planar convex hulls. Communications of the ACM, 22:402-405, 1979. URL: https://doi.org/10.1145/359131.359132.
  29. Neil Sarnak and Robert E. Tarjan. Planar point location using persistent search trees. Communications of the ACM, 29:669-679, 1986. Google Scholar
  30. Rajamani Sundar. Worst-case data structures for the priority queue with attrition. Information Processing Letters, 31:69-75, 1989. URL: https://doi.org/10.1016/0020-0190(89)90071-9.
  31. Athanasios K. Tsakalidis. AVL-trees for localized search. Information and Control, 67:173-194, 1985. URL: https://doi.org/10.1016/S0019-9958(85)80034-6.
  32. Haitao Wang. Algorithms for subpath convex hull queries and ray-shooting among segments. In Proceedings of the 36th International Symposium on Computational Geometry (SoCG), pages 69:1-69:14, 2020. URL: https://doi.org/10.4230/LIPIcs.SoCG.2020.69.
  33. Haitao Wang. Dynamic convex hulls under window-sliding updates. In Proceedings of the 18th Algorithms and Data Structures Symposium (WADS), pages 689-703, 2023. URL: https://doi.org/10.1007/978-3-031-38906-1_46.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail