Map-Matching Queries Under Fréchet Distance on Low-Density Spanners

Authors Kevin Buchin , Maike Buchin , Joachim Gudmundsson , Aleksandr Popov , Sampson Wong



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.27.pdf
  • Filesize: 1.73 MB
  • 15 pages

Document Identifiers

Author Details

Kevin Buchin
  • Department of Computer Science, TU Dortmund, Germany
Maike Buchin
  • Faculty of Computer Science, Ruhr-Universität Bochum, Germany
Joachim Gudmundsson
  • School of Computer Science, University of Sydney, Australia
Aleksandr Popov
  • Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
Sampson Wong
  • Department of Computer Science, University of Copenhagen, Denmark

Cite AsGet BibTex

Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Aleksandr Popov, and Sampson Wong. Map-Matching Queries Under Fréchet Distance on Low-Density Spanners. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 27:1-27:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.27

Abstract

Map matching is a common task when analysing GPS tracks, such as vehicle trajectories. The goal is to match a recorded noisy polygonal curve to a path on the map, usually represented as a geometric graph. The Fréchet distance is a commonly used metric for curves, making it a natural fit. The map-matching problem is well-studied, yet until recently no-one tackled the data structure question: preprocess a given graph so that one can query the minimum Fréchet distance between all graph paths and a polygonal curve. Recently, Gudmundsson, Seybold, and Wong [Gudmundsson et al., 2023] studied this problem for arbitrary query polygonal curves and c-packed graphs. In this paper, we instead require the graphs to be λ-low-density t-spanners, which is significantly more representative of real-world networks. We also show how to report a path that minimises the distance efficiently rather than only returning the minimal distance, which was stated as an open problem in their paper.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Map Matching
  • Fréchet Distance
  • Data Structures

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohamed Ali, John Krumm, Travis Rautman, and Ankur Teredesai. ACM SIGSPATIAL GIS cup 2012. In Isabel Cruz, Craig Knoblock, Peer Kröger, Egemen Tanin, and Peter Widmayer, editors, Proceedings of the 20th International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2012), pages 597-600, New York, NY, USA, 2012. ACM. URL: https://doi.org/10.1145/2424321.2424426.
  2. Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. Journal of Algorithms, 49(2):262-283, 2003. URL: https://doi.org/10.1016/S0196-6774(03)00085-3.
  3. Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, 5(1):75-91, 1995. URL: https://doi.org/10.1142/S0218195995000064.
  4. Boris Aronov, Kevin Buchin, Maike Buchin, Bart Jansen, Tom de Jong, Marc van Kreveld, Maarten Löffler, Jun Luo, Rodrigo I. Silveira, and Bettina Speckmann. Connect the dot: Computing feed-links for network extension. Journal of Spatial Information Science, 3:3-31, 2011. URL: https://doi.org/10.5311/JOSIS.2011.3.47.
  5. Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching vehicle tracking data. In Kjell Bratbergsengen, editor, Proceedings of the 31st International Conference on Very Large Data Bases (VLDB 2005), pages 853-864, Los Angeles, CA, USA, 2005. VLDB Endowment. URL: https://dl.acm.org/doi/10.5555/1083592.1083691.
  6. Erin Chambers, Brittany Terese Fasy, Yusu Wang, and Carola Wenk. Map-matching using shortest paths. ACM Transactions on Spatial Algorithms and Systems, 6(1):6:1-6:17, 2020. URL: https://doi.org/10.1145/3368617.
  7. Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. A survey on map-matching algorithms. In Renata Borovica-Gajic, Jianzhong Qi, and Weiqing Wang, editors, Databases Theory and Applications: 31st Australasian Database Conference (ADC 2020), volume 12008 of Lecture Notes in Computer Science, pages 121-133, Berlin, Germany, 2020. Springer. URL: https://doi.org/10.1007/978-3-030-39469-1_10.
  8. Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approximate map matching with respect to the Fréchet distance. In Matthias Müller-Hannemann and Renato Werneck, editors, Proceedings of the 2011 Workshop on Algorithm Engineering and Experiments (ALENEX), pages 75-83, Philadelphia, PA, USA, 2011. SIAM. URL: https://doi.org/10.1137/1.9781611972917.8.
  9. Daniel Chen, Christian Sommer, and Daniel Wolleb. Fast map matching with vertex-monotone Fréchet distance. In Matthias Müller-Hannemann and Federico Perea, editors, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021), volume 96 of Open Access Series in Informatics (OASIcs), pages 10:1-10:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/OASIcs.ATMOS.2021.10.
  10. Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance with shortcuts. SIAM Journal on Computing, 42(5):1830-1866, 2013. URL: https://doi.org/10.1137/120865112.
  11. Michael Godau. A natural metric for curves: Computing the distance for polygonal chains and approximation algorithms. In Christian Choffrut and Matthias Jantzen, editors, Proceedings of the 8th Annual Symposium on Theoretical Aspects of Computer Science (STACS 1991), volume 480 of Lecture Notes in Computer Science, pages 127-136, Berlin, Germany, 1991. Springer. URL: https://doi.org/10.1007/BFb0020793.
  12. Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306, 1985. URL: https://doi.org/10.1016/0304-3975(85)90224-5.
  13. Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. Map matching queries on realistic input graphs under the Fréchet distance. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1464-1492, Philadelphia, PA, USA, 2023. SIAM. URL: https://doi.org/10.1137/1.9781611977554.ch53.
  14. Joachim Gudmundsson and Michiel Smid. Fast algorithms for approximate Fréchet matching queries in geometric trees. Computational Geometry: Theory & Applications, 48(6):479-494, 2015. URL: https://doi.org/10.1016/j.comgeo.2015.02.003.
  15. Mahdi Hashemi and Hassan A. Karimi. A critical review of real-time map-matching algorithms: Current issues and future directions. Computers, Environment and Urban Systems, 48:153-165, 2014. URL: https://doi.org/10.1016/j.compenvurbsys.2014.07.009.
  16. Matej Kubicka, Arben Cela, Hugues Mounier, and Silviu-Iulian Niculescu. Comparative study and application-oriented classification of vehicular map-matching methods. IEEE Intelligent Transportation Systems Magazine, 10(2):150-166, 2018. URL: https://doi.org/10.1109/MITS.2018.2806630.
  17. Hung Le and Cuong Than. Greedy spanners in Euclidean spaces admit sublinear separators. In Joseph Naor and Niv Buchbinder, editors, Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3287-3310, Philadelphia, PA, USA, 2022. SIAM. URL: https://doi.org/10.1137/1.9781611977073.130.
  18. Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics, 36(2):177-189, 1979. URL: https://doi.org/10.1137/0136016.
  19. Stig Nordbeck. Computing distances in road networks. Papers in Regional Science, 12(1):207-220, 1964. URL: https://doi.org/10.1111/j.1435-5597.1964.tb01266.x.
  20. OpenStreetMap. Map data, 2023. URL: https://openstreetmap.org.
  21. Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments. Information Processing Letters, 60(3):121-127, 1996. URL: https://doi.org/10.1016/S0020-0190(96)00154-8.
  22. Martin P. Seybold. Robust map matching for heterogeneous data via dominance decompositions. In Nitesh Chawla and Wei Wang, editors, Proceedings of the 2017 SIAM International Conference on Data Mining (SDM), pages 813-821, Philadelphia, PA, USA, 2017. SIAM. URL: https://doi.org/10.1137/1.9781611974973.91.
  23. A. Frank van der Stappen. Motion Planning Amidst Fat Obstacles. PhD thesis, Universiteit Utrecht, 1994. URL: https://webspace.science.uu.nl/~stapp101/PhDThesis_AFvanderStappen.pdf.
  24. Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. Map matching: Comparison of approaches using sparse and noisy data. In Craig Knoblock, Peer Kröger, John Krumm, Markus Schneider, and Peter Widmayer, editors, Proceedings of the 21st International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2013), pages 444-447, New York, NY, USA, 2013. ACM. URL: https://doi.org/10.1145/2525314.2525456.
  25. Yu Zheng and Xiaofang Zhou, editors. Computing with Spatial Trajectories. Springer, Berlin, Germany, 2011. URL: https://doi.org/10.1007/978-1-4614-1629-6.