LIPIcs.SoCG.2024.27.pdf
- Filesize: 1.73 MB
- 15 pages
Map matching is a common task when analysing GPS tracks, such as vehicle trajectories. The goal is to match a recorded noisy polygonal curve to a path on the map, usually represented as a geometric graph. The Fréchet distance is a commonly used metric for curves, making it a natural fit. The map-matching problem is well-studied, yet until recently no-one tackled the data structure question: preprocess a given graph so that one can query the minimum Fréchet distance between all graph paths and a polygonal curve. Recently, Gudmundsson, Seybold, and Wong [Gudmundsson et al., 2023] studied this problem for arbitrary query polygonal curves and c-packed graphs. In this paper, we instead require the graphs to be λ-low-density t-spanners, which is significantly more representative of real-world networks. We also show how to report a path that minimises the distance efficiently rather than only returning the minimal distance, which was stated as an open problem in their paper.
Feedback for Dagstuhl Publishing