Semi-Algebraic Off-Line Range Searching and Biclique Partitions in the Plane

Authors Pankaj K. Agarwal , Esther Ezra , Micha Sharir



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.4.pdf
  • Filesize: 0.76 MB
  • 15 pages

Document Identifiers

Author Details

Pankaj K. Agarwal
  • Department of Computer Science, Duke University, Durham, NC, USA
Esther Ezra
  • Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
Micha Sharir
  • School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Acknowledgements

We thank Nabil Mustafa and Sergio Cabello for useful discussions that motivated the study reported in this paper.

Cite AsGet BibTex

Pankaj K. Agarwal, Esther Ezra, and Micha Sharir. Semi-Algebraic Off-Line Range Searching and Biclique Partitions in the Plane. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.4

Abstract

Let P be a set of m points in ℝ², let Σ be a set of n semi-algebraic sets of constant complexity in ℝ², let (S,+) be a semigroup, and let w: P → S be a weight function on the points of P. We describe a randomized algorithm for computing w(P∩σ) for every σ ∈ Σ in overall expected time O^*(m^{2s/(5s-4)}n^{(5s-6)/(5s-4)} + m^{2/3}n^{2/3} + m + n), where s > 0 is a constant that bounds the maximum complexity of the regions of Σ, and where the O^*(⋅) notation hides subpolynomial factors. For s ≥ 3, surprisingly, this bound is smaller than the best-known bound for answering m such queries in an on-line manner. The latter takes O^*(m^{s/(2s-1)}n^{(2s-2)/(2s-1)} + m + n) time. Let Φ: Σ × P → {0,1} be the Boolean predicate (of constant complexity) such that Φ(σ,p) = 1 if p ∈ σ and 0 otherwise, and let Σ_Φ P = {(σ,p) ∈ Σ× P ∣ Φ(σ,p) = 1}. Our algorithm actually computes a partition ℬ_Φ of Σ_Φ P into bipartite cliques (bicliques) of size (i.e., sum of the sizes of the vertex sets of its bicliques) O^*(m^{2s/(5s-4)}n^{(5s-6)/(5s-4)} + m^{2/3}n^{2/3} + m + n). It is straightforward to compute w(P∩σ) for all σ ∈ Σ from ℬ_Φ. Similarly, if η: Σ → S is a weight function on the regions of Σ, ∑_{σ ∈ Σ: p ∈ σ} η(σ), for every point p ∈ P, can be computed from ℬ_Φ in a straightforward manner. We also mention a few other applications of computing ℬ_Φ.

Subject Classification

ACM Subject Classification
  • Theory of computation
Keywords
  • Range-searching
  • semi-algebraic sets
  • pseudo-lines
  • duality
  • geometric cuttings

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. P. Afshani and P. Cheng,Lower bounds for semialgebraic range searching and stabbing problems,Proc. 37th Intl. Sympos. Comput. Geom., pages 8:1-8:15,2021. Google Scholar
  2. P. Afshani and P. Cheng,On semialgebraic range reporting,Proc. 38th Intl. Sympos. Comput. Geom., pages 3:1-3:14,2022. Google Scholar
  3. P. K. Agarwal,Simplex range searching,in Journey Through Discrete Mathematics (M. Loebl, J. Nešetřil and R. Thomas, eds.),Springer Verlag, Heidelberg, 2017, pp. 1-30. Google Scholar
  4. P. K. Agarwal, N. Alon, B. Aronov, and S. Suri, Can visibility graphs be represented compactly?, Discrete Comput. Geom., 12 (1994), 347-365. Google Scholar
  5. P. K. Agarwal, B. Aronov, E. Ezra, M. J. Katz, and M. Sharir,Intersection queries for flat semi-algebraic objects in three dimensions and related problems,Proc. 38th Intl. Sympos. Comput. Geom.,pages 4:1-4:14, 2022. (Full version appeared as Arxiv:2203.10241.) Google Scholar
  6. P. K. Agarwal, B. Aronov, E. Ezra, and J. Zahl,An efficient algorithm for generalized polynomial partitioning and its applications,SIAM J. Comput. 50 (2021), 760-787. Google Scholar
  7. P. K. Agarwal, Boris Aronov, and Micha Sharir,Computing envelopes in four dimensions with applications,SIAM J. Comput. 26 (1997), 1714-1732. Google Scholar
  8. P. K. Agarwal, B. Aronov, and M. Sharir, On the complexity of many faces in arrangements of pseudo-segments and of circles, in Discrete and Computational Geometry: The Goodman-Pollack Festschrift(B. Aronov, S. Basu, J. Pach, and M. Sharir, eds.), Springer Verlag, Berlin, 2003, pp. 1-24. Google Scholar
  9. P. K. Agarwal, A. Efrat, and M. Sharir,Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications,SIAM J. Comput. 29(3) (1999), 912-953. Google Scholar
  10. P. K. Agarwal and J. Erickson,Geometric range searching and its relatives,In Advances in Discrete and Computational Geometry, volume 223of Contemp. Math., pages 1-56. AMS Press, Providence, RI, 1999. Google Scholar
  11. P. K. Agarwal, E. Ezra, M. and M. Sharir,Semi-algebraic off-line range searching and biclique partitions in the plane, Arxiv 2403.12276, 2024. Google Scholar
  12. P. K. Agarwal, M. J. Katz, Micha Sharir,On reverse shortest paths in geometric proximity graphs. Comput. Geom. 117:102053 (2024). Google Scholar
  13. P. K. Agarwal, J. Matoušek, and M. Sharir. On range searching with semialgebraic sets II. SIAM J. Comput., 42 (2013), 2039-2062. Google Scholar
  14. P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir and S. Smorodinsky,Lenses in arrangements of pseudo-circles and their applications,J. ACM 51(2) (2004), 139-186. Google Scholar
  15. P. K. Agarwal and M. Sharir:Efficient randomized algorithms for some geometric optimization problems,Discrete Comput. Geom. 16 (1996), 317-337. Google Scholar
  16. P. K. Agarwal and M. Sharir,Pseudoline arrangements: Duality, algorithms and applications,SIAM J. Comput. 34 (2005), 526-552. Google Scholar
  17. P. K. Agarwal and K. Varadarajan, Efficient algorithms for approximating polygonal chains, Discrete Comput. Geom. 23 (2000), 273-–291. Google Scholar
  18. R. Apfelbaum and M. Sharir, Large bipartite graphs in incidence graphs of points and hyperplanes, SIAM J. Discrete Math. 21 (2007), 707-–725. Google Scholar
  19. B. Aronov, E. Ezra and J. Zahl, Constructive polynomial partitioning for algebraic curves in ℝ³ with applications,SIAM J. Comput. 49 (2020), 1109-1127. Google Scholar
  20. B. Aronov and M. Sharir, Cutting circles into pseudo-segments and improved bounds for incidences,Discrete Comput. Geom. 28 (2002), 475-490. Google Scholar
  21. B. Aronov and M. Sharir, Almost tight bounds for eliminating depth cycles in three dimensions,Discrete Comput. Geom. 59 (2018), 725-741.Also in Arxiv 1512.00358. Google Scholar
  22. S. Barone and S. Basu,Refined bounds on the number of connected components of signconditions on a variety,Discrete Comput. Geom. 47 (2012), 577-597. Google Scholar
  23. S. Basu, R. Pollack, and M.-F. Roy,Algorithms in Real Algebraic Geometry,2nd Edition, Springer Verlag, Berlin, 2006. Google Scholar
  24. M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars,Computational Geometry: Algorithms and Applications, 3rd Edition, Springer Verlag, Berlin, 2008. Google Scholar
  25. M. de Berg, K. Dobrindt, and O. Schwarzkopf,On lazy randomized incremental construction,Discrete Comput. Geom. 14 (1995), 261-286. Google Scholar
  26. M. de Berg and O. Schwarzkopf,Cuttings and applications,Internat. J. Comput. Geom. Appls 5 (1995), 343-355. Google Scholar
  27. P. Brass and Ch. Knauer,On counting point-hyperplane incidences,Comput. Geom. Theory Appls. 25 (2003), 13-20. Google Scholar
  28. H. Brönnimann and M. T. Goodrich,Almost optimal set covers in finite VC-dimension,Discrete Comput. Geom. 14 (1995), 463-479. Google Scholar
  29. S. Cabello, S.-W. Cheng, O. Cheong, and C. Knauer,Geometric matching and bottleneck problems, Proc. 40th Intl. Sympos. Comput. Geom, 2024, 31:1-31:15. Also in Arxiv 2310.02637, 2023. Google Scholar
  30. P. B. Callahan and S. Rao Kosaraju,A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields,J. ACM 42 (1995), 67-90. Google Scholar
  31. P. B. Callahan and S. Rao Kosaraju,Faster algorithms for some geometric graph problems in higher dimensions,Proc. 4th Annual ACM-SIAM Sympos. Discrete Algorithms, 1993, 291-300. Google Scholar
  32. J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm for particle simulations,SIAM J. Sci. Stat. Comput. 9 (1988), 669-686. Google Scholar
  33. T. M. Chan, P. Cheng and D. W. Zheng,Semialgebraic range stabbing, ray shooting, and intersection counting in the plane,Proc. 40th Sympos. Comput. Geom., 2024, 33:1-33:15. Google Scholar
  34. B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom. 9 (1993), 145-158. Google Scholar
  35. B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir,Algorithms for bichromatic line-segment problems and polyhedral terrains,Algorithmica 11 (1994), 116-132. Google Scholar
  36. F. R. K. Chung, P. Erdős, and J. Spencer, On the decomposition of graphs into complete bipartite subgraphs, in Studies in Mathematics: To the Memory of Paul Turán, (P. Erdős, L. Alpar, G. Haĺasz, and A. Sárközy, eds.), Birkhäuser, Basel, 1983, pp. 95-101. Google Scholar
  37. K. L. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir and E. Welzl,Combinatorial complexity bounds for arrangements of curves and spheres,Discrete Comput. Geom. 5 (1990), 99-160. Google Scholar
  38. K. L. Clarkson and Peter W. Shor,Application of random sampling in computational geometry, II. Discrete Comput. Geom. 4 (1989), 387-421. Google Scholar
  39. T. Do,Representation complexities of semialgebraic graphs,SIAM J. Discrete Math. 33 (2019), 1864-1877. Google Scholar
  40. T. Feder and R. Motwani, Clique partitions, graph compression, and speeding-up algorithms,J. Comput. System Sci. 51 (1995), 261-272. Google Scholar
  41. J. Fox, J. Pach, A. Sheffer, A. Suk, and J. Zahl, A semi-algebraic version of Zarankiewicz’s problem, J. Eur. Math. Soc. 19 (2017), 1785-1810. Google Scholar
  42. J. Fox, J. Pach, and A. Suk, A polynomial regularity lemma for semialgebraic hypergraphsand its applications in geometry and property testing, SIAM J. Comput. 45 (2016), 2199-2223. Google Scholar
  43. J. Fox, J. Pach, and A. Suk, Density and regularity theorems for semi-algebraic hypergraphs, Proc. 26th ACM-SIAM Sympos. Discrete Algorithms, 2015, 1517-1530. Google Scholar
  44. J. E. Goodman,Proof of a conjecture of Burr, Grünbaum, and Sloane,Discrete Math. 32 (1980), 27-35. Google Scholar
  45. L. Guth and N. H. Katz,On the Erdős distinct distances problem in the plane,Annals Math. 181 (2015), 155-190. Google Scholar
  46. M. J. Katz and M. Sharir,An expander-based approach to geometric optimization,SIAM J. Comput. 26 (1997), 1384-1408. Google Scholar
  47. J. Matoušek,Geometric range searching,ACM Comput. Surv. 26(4) (1994), 421-461. Google Scholar
  48. J. Matoušek,Randomized optimal algorithm for slope selection,Inf. Process. Lett. 39(4) (1991), 183-187. Google Scholar
  49. J. Matoušek and Z. Patáková,Multilevel polynomial partitioning and simplified range searching,Discrete Comput. Geom. 54 (2015), 22-41. Google Scholar
  50. J. Pach and M. Sharir,On the number of incidences between points and curves,Combinat. Probab. Comput. 7 (1998), 121-127. Google Scholar
  51. J. Pach and M. Sharir,Geometric incidences,in Towards a Theory of Geometric Graphs (J. Pach, editor), Contemp. Math. 342, AMS Press, Providence, 2004, pp. 185-223. Google Scholar
  52. M. Sharir and P. K. Agarwal,Davenport-Schinzel Sequences and Their Geometric Applications,Cambridge University Press, Cambridge-New York-Melbourne, 1995. Google Scholar
  53. M. Sharir and J. Zahl,Cutting algebraic curves into pseudo-segments and applications,J. Combinat. Theory Ser. A 150 (2017), 1-35. Google Scholar
  54. A. Sheffer, Polynomial Methods and Incidence Theory,Cambridge University Press, Cambridge, 2022. Google Scholar
  55. L. Székely,Crossing numbers and hard Erdős problems in discrete geometry,Combinat. Probab. Comput. 6 (1997), 353-358. Google Scholar
  56. E. Szemer'edi and W. T. Trotter, Extremal problems in discrete geometry, Combinatorica 3 (1983), 381-392. Google Scholar
  57. Z. Tuza, Covering of graphs by complete bipartite subgraphs; complexity of 0–1 matrices,Combinatorica 4 (1984), 111-116. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail